Способы наблюдения и регистрации заряженных частиц. Методы наблюдения и регистрации элементарных частиц Какие методы регистрации частиц существуют

Методы регистрации элементарных частиц


1) Газоразрядный счётчик Гейгера

Счётчик Гейгера- один из важнейших приборов для автоматического счёта частиц.

Счётчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод), и тонкой металлической нити, идущей вдоль оси трубки (анод).

Трубка заполняется газом, обычно аргоном. Действие счётчика основано на ударной ионизации. Заряженная частица (электрон,£- частица и т.д.), пролетая в газе, отрывает от атомов электроны и создаёт положительные ионы и свободные электроны. Электрическое поле между анодом и катодом (к ним подводится высокое напряжение) ускоряет электроны до энергии, при которых начинается ударная ионизация. Возникает лавина ионов, и ток через счётчик резко возрастает. При этом на нагрузочном резисторе R образуется импульс напряжения, который подаётся в регистрирующее устройство. Для того чтобы счётчик мог регистрировать следующую попавшую в него частицу, лавинный разряд необходимо погасить. Это происходит автоматически. Так как в момент появления импульса тока падение напряжения на разгрузочном резисторе R велико, то напряжение между анодом и катодом резко уменьшается – настолько,что разряд прекращается.

Счётчик Гейгера применяется в основном для регистрации электронов и Y-квантов(фотонов большой энергии).Однако непосредственно Y- кванты вследствие их малой ионизирующей способности не регистрируются. Для их обнаружения внутреннюю стенку трубки покрывают материалом, из которого Y-кванты выбивают электроны.

Счётчик регистрирует почти все попадающие в него электроны; что же касается Y- квантов,то он регистрирует приблизительно только один Y-квант из ста. Регистрация тяжёлых частиц (например, £-частиц) затруднена, так как сложно сделать в счётчике достаточно тонкое «окошко», прозрачное для этих частиц.

2) Камера Вильсона

Действие камеры Вильсона основано на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создаёт вдоль своей траектории движущаяся заряженная частица.

Прибор представляет собой цилиндр с поршнем 1 (рис. 2), накрытый плоской стеклянной крышкой 2. В цилиндре находятся насыщенные пары воды или спирта. В камеру вводится исследуемый радиоактивный препарат 3, который образует ионы в рабочем объеме камеры. При резком опускании поршня вниз, т.е. при адиабатном расширении, происходит охлаждение пара и он становится перенасыщенным. В этом состоянии пар легко конденсируется. Центрами конденсации становятся ионы, образованные пролетевшей в это время частицей. Так в камере появляется туманный след (трек) (рис.3), который можно наблюдать и фотографировать. Трек существует десятые доли секунды. Вернув поршень в исходное положение и удалив ионы электрическим полем, можно вновь выполнить адиабатное расширение. Таким образом, опыты с камерой можно проводить многократно.

Если камеру поместить между полюсами электромагнита, то возможности камеры по изучению свойств частиц значительно расширяются. В этом случае на движущуюся частицу действует сила Лоренца, что позволяет по искривлению траектории определить значение заряда частицы и ее импульс. На рисунке 4 приведен возможный вариант расшифровки фотографии треков электрона и позитрона. Вектор индукции В магнитного поля направлен перпендикулярно плоскости чертежа за чертеж. Влево отклоняется позитрон, вправо - электрон.


3) Пузырьковая камера

Отличается от камеры Вильсона тем, что перенасыщенные пары в рабочем объеме камеры заменяются перегретой жидкостью, т.е. такой жидкостью, которая находится под давлением, меньшим давления ее насыщенных паров.

Пролетая в такой жидкости, частица вызывает возникновение пузырьков пара, образуя тем самым трек (рис.5).

В исходном состоянии поршень сжимает жидкость. При резком понижении давления температура кипения жидкости оказывается меньше температуры окружающей среды.

Жидкость переходит в неустойчивое (перегретое) состояние. Это и обеспечивает появление пузырьков на пути движения частицы. В качестве рабочей смеси применяются водород, ксенон, пропан и некоторые другие вещества.

Преимущество пузырьковой камеры перед камерой Вильсона обусловлено большей плотностью рабочего вещества. Пробеги частиц вследствие этого оказываются достаточно короткими, и частицы даже больших энергий застревают в камере. Это позволяет наблюдать серию последовательных превращений частицы и вызываемые ею реакции.


4) Метод толстослойных фотоэмульсий

Для регистрации частиц наряду с камерами Вильсона и пузырьковыми камерами применяются толстослойные фотоэмульсии. Ионизирующие действие быстрых заряженных частиц на эмульсию фотопластинки. Фотоэмульсия содержит большое количество микроскопических кристалликов бромида серебра.

Быстрая заряженная частица, пронизывая кристаллик, отрывает электроны от отдельных атомов брома. Цепочка таких кристалликов образует скрытое изображение. При появлении в этих кристалликах восстанавливается металлическое серебро и цепочка зёрен серебра образует трек частицы.

По длине и толщине трека можно оценить энергию и массу частицы. Из-за большой плотности фотоэмульсии треки получаются очень короткими, но при фотографировании их можно увеличить. Преимущество фотоэмульсии состоит в том, что время экспозиции может быть сколько угодно большим. Это позволяет регистрировать редкие явления. Важно и то, что благодаря большой тормозящей способности фотоэмульсии увеличивается число наблюдаемых интересных реакций между частицами и ядрами.


Сих пор явлениях каждая такая частица ведет себя как единое целое. Элементарные частицы могут превращаться друг в друга. В настоящее время известны четыре вида взаимодействий между элементарными частицами: сильное, электромагнитное, слабое и гравитационное (в порядке убывания интенсивности). Сильное взаимодействие. Этот вид взаимодействия называют иначе ядерным, так как оно обеспечивает связь...


... (дозиметров). Исследования биологического действия ионизирующих излучений на клеточном и молекулярном уровнях вызвали развитие микродозиметрии, исследующей передачу энергии излучения микроструктурам вещества. Методы дозиметрии У человека в процессе эволюции не выработалось органов чувств, способных к специфическому восприятию ионизирующих излучений, которые невидимы, не имеют цвета, запаха, ...

В лабораторных экспериментах и астрономических наблюдениях. Эти составные элементы космомикрофизики имеют свою специфику, к обсуждению которой мы и переходим. 4. Космические лучи Развитие физики элементарных частиц тесно связало с изучением космического излучения - излучения, приходящего на Землю практически изотропно со всех направлений космического пространства. Измерения интенсивности...

Телепередача из печени и др. Любопытные эффекты и остроумные решения: радиоактивность человека, радиоактивный сыр, восстановление пропавших изображений на фотографиях, автографы невидимок. Методы поиска и исследований в преподавании физики Введение От мифов к простым фактам. Потребность в познании мира в начале привела к попыткам объяснить мир сразу в целом, немедленно получить ответы на...

Элементарные частицы удаётся наблюдать благодаря тем следам, которые они оставляют при своём прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, её энергии, импульсе и т. п. Заряженные частицы вызывают ионизацию молекул на своём пути. Нейтральные частицы следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, нейтральные частицы также обнаруживаются по ионизации, вызванной порождёнными ими заряженными частицами.

Приборы, применяемые для регистрации ионизирующих частиц, подразделяются на две группы. К первой группе относятся устройства, которые регистрируют факт пролёта частицы и позволяют судить об её энергии. Вторую группу образуют трековые приборы, т. е. приборы, позволяющие наблюдать следы частиц в веществе.

Регистрирующие приборы

К числу регистрирующих приборов относятся ионизационные камеры и газоразрядные счётчики . Широкое распространение получили черенковские счётчики и сцинтилляционные счётчики .

Заряженная частица, пролетающая через вещество, вызывает не только ионизацию, но и возбуждение атомов. Возвращаясь в нормальное состояние, атомы испускают видимый свет. Вещества, в которых заряженные частицы возбуждают заметную световую вспышку (сцинтилляцию), называют фосфорами. Фосфоры бывают органические и неорганические.

Сцинтилляционный счетчик состоит из фосфора, от которого свет подается по специальному светопроводу к фотоумножителю. Импульсы, получающиеся на выходе фотоумножителя, подвергаются счету. Определяется также амплитуда импульсов (которая пропорциональна интенсивности световых вспышек), что дает дополнительную информацию о регистрируемых частицах.

Счетчики часто объединяются в группы и включаются так, чтобы регистрировались только такие события, которые отмечаются одновременно несколькими приборами, либо только одним ним из них. В первом случае говорят, что счетчики включены по схеме совпадений, во втором -- по схеме антисовпадений.

Трековые приборы

К числу трековых приборов относится камеры Вильсона, пузырьковые камеры, искровые камеры и эмульсионные камеры.

Камера Вильсона. Так называют прибор, созданный английским физиком Ч. Вильсоном в 1912 г. Дорожка из ионов, проложенная летящей заряженной частицей, становится видимой в камере Вильсона, потому что на ионах происходит конденсация пересыщенных паров какой-либо жидкости. Прибор работает не непрерывно, а циклами. Сравнительно короткое время чувствительности камеры чередуется с мертвым временем (в 100--1000 раз большим), в течение которого камера готовится к следующему рабочему циклу. Пересыщение достигается за счет внезапного охлаждения, вызываемого резким (адиабатическим) расширением рабочей смеси, состоящей из неконденсирующегося газа (гелия, азота, аргона) и паров воды, этилового спирта и т. п. В этот же момент производится стереоскопическое (т. е. с нескольких точек) фотографирование рабочего объема камеры. Стереофотографии позволяют воссоздать пространственную картину зафиксированного явления. Так как отношение времени чувствительности к мертвому времени очень мало, приходится иногда делать десятки тысяч снимков, прежде чем будет зафиксировано какое-либо событие, обладающее небольшой вероятностью. Чтобы увеличить вероятность наблюдения редких явлений, используются управляемые камеры Вильсона, у которых работой расширительного механизма управляют счетчики частиц, включенные в электронную схему, выделяющую нужное событие.

Пузырьковая камера. В изобретенной Д. А. Глезером в 1952 г. пузырьковой камере пересыщенные пары заменены прозрачной перегретой жидкостью (т. е. жидкостью, находящейся под внешним давлением, меньшим давления ее насыщенных паров). Пролетевшая через камеру ионизирующая частица вызывает бурное вскипание жидкости, вследствие чего след частицы оказывается обозначенным цепочкой пузырьков пара -- образуется трек. Пузырьковая камера, как и камера Вильсона, работает циклами. Запускается камера резким снижением (сбросом) давления, вследствие чего рабочая жидкость переходит в метастабильное перегретое состояние. В качестве рабочей жидкости, которая одновременно служит мишенью для пролетающих через нее частиц, применяются жидкий водород (в этом случае нужны низкие температуры).

Искровые камеры. В 1957 г. Краншау и де-Биром был сконструирован прибор для регистрации траекторий заряженных частиц, названный искровой камерой. Прибор состоит из системы плоских параллельных друг другу электродов, выполненных в виде каркасов с натянутой на них металлической фольгой либо в виде металлических пластин. Электроды соединяются через один. Одна группа электродов заземляется, а на другую периодически подается кратковременный (длительностью 10 -7 сек) высоковольтный импульс (10-- 15 кВ). Если в момент подачи импульса через камеру пролетит ионизирующая частица, её путь будет отмечен цепочкой искр, проскакивающих между электродами. Прибор запускается автоматически с помощью включенных по схеме совпадений дополнительных счетчиков, регистрирующих прохождение через рабочий объем камеры исследуемых частиц. В камерах, наполненных инертными газами, межэлектродное расстояние может достигать нескольких сантиметров. Если направление полета частицы образует с нормалью к электродам угол, не превышающий 40°, разряд в таких камерах развивается по направлению трека частицы.

Метод фотоэмульсий. Советские физики Л. В. Мысовский и А. П. Жданов впервые применили для регистрации элементарных частиц фотопластинки. Заряженная частица, проходя через фотоэмульсию, вызывает такое же действие, как и фотоны. Поэтому после проявления пластинки в эмульсии образуется видимый след (трек) пролетевшей частицы. Недостатком метода фотопластинок была малая толщина эмульсионного слоя, вследствие чего получались полностью лишь треки частиц летящих параллельно плоскости слоя. В эмульсионных камерах облучению подвергаются толстые пачки (весом до нескольких десятков килограммов), составленные из отдельных слоев фотоэмульсии (без подложки). После облучения пачка разбирается на слои, каждый из которых проявляется и просматривается под микроскопом. Для того чтобы можно было проследить путь частицы при переходе из одного слоя в другой, перед разборкой пачки на все слои наносится с помощью рентгеновских лучей одинаковая координатная сетка.

Элементарные частицы удается наблюдать благодаря тем следам, которые они оставляют при прохождении через вещество. Характер следов позволяет судить о знаке заряда частицы, её энергии, импульсе. Заряженные частицы вызывают ионизацию молекул на своем пути. Нейтральные частицы на своем пути следов не оставляют, но они могут обнаружить себя в момент распада на заряженные частицы или в момент столкновения с каким-либо ядром. Следовательно, нейтральные частицы также обнаруживаются по ионизации, вызванной порожденными или заряженными частицами.

Газоразрядный счетчик Гейгера . Счетчик Гейгера – прибор для автоматического счета частиц. Счетчик состоит из стеклянной трубки, покрытой изнутри металлическим слоем (катод) и тонкой металлической нити, идущей по оси трубки (анод).

Трубка обычно заполняется инертным газом (аргоном). Действие прибора основано на ударной ионизации. Заряженная частица, пролетая в газе, соударяется с атомами, в результате чего возникают положительные ионы газа и электроны. Электрическое поле между катодом и анодом ускоряет электроны до энергий, при которых начинается ударная ионизация. Возникает лавина ионов и электронов и ток через счетчик резко возрастает. При этом на нагрузочном сопротивлении R образуется импульс напряжения, который подается на счетное устройство.

Счетчик Гейгера применяется в основном для регистрации электронов и -квантов. Регистрация тяжелых частиц (например -частиц) затруднена, так как сложно сделать в счетчике достаточно тонкое «окошко», прозрачное для этих частиц.

Камера Вильсона . В камере Вильсона, созданной в 1912г., заряженная частица оставляет след, который можно наблюдать непосредственно или фотографировать. Действие камеры основано на конденсации перенасыщенного пара на ионах с образованием капелек воды. Эти ионы создает вдоль своей траектории движущаяся заряженная частица. По длине следа (трека), оставленного частицей, можно определить энергию частицы, а по числу капелек на единицу длины трека оценить её скорость. Частицы с большим зарядом оставляют трек большей толщины.

Пузырьковая камера. В 1952г. американский ученый Д. Глейзер предложил использовать для обнаружения треков частиц перегретую жидкость. Пролетевшая через камеру ионизирующая частица вызывает бурное вскипание жидкости, вследствие чего след частицы оказывается обозначенным цепочкой пузырьков пара – образуется трек.

Эмульсионная камера. Советские физики Л.В. Мысовский и А.П. Жданов впервые применили для регистрации микрочастиц фотопластинки. Заряженные частицы оказывают на фотографическую эмульсию такое же действие, как и фотоны. Поэтому после проявления пластинки в эмульсии образуется видимый след (трек) пролетевшей частицы. Недостатком метода фотопластинок была малая толщина эмульсионного слоя, вследствие чего получались полностью лишь треки частиц, лежащих параллельно плоскости слоя.

В эмульсионных камерах облучению подвергаются толстые пачки, составленные из отдельных слоев фотоэмульсии. Этот метод назвали методом толстослойных фотоэмульсий.

Трековые методы. Заряженная частица, двигаясь в газе, ионизирует его, создавал на своём пути цепочку ионов. Если создать в газе резкий скачок давления, то на этих ионах, как на центрах конденсации, оседает пересыщенный пар, образуя цепочку капелек жидкости - трек.
А) Камера Вильсона (англ.) 1912 г.
1) стеклянный цилиндрический сосуд, покрытый сверху стеклом;
2) снизу сосуд покрыт слоем чёрного влажного бархата или сукна;
З) сетка, над поверхностью которой образуется насыщенный пар.
4) поршень, при быстром опускании которого происходит адиабатное расширение газа, что сопровождается
понижением его температуры, пар становится переохлаждённым (пересыщенным).
Заряженные частицы, образующиеся при радиоактивном распаде, пролетая в газе, создают на своём пути цепочку ионов. При опускании поршня на этих ионах, как на центрах конденсаций, образуются капельки жидкости. Таким образом, при полёте частица оставляет за собой след (трек), который хорошо виден и может быть сфотографирован. По толщине и длине трека судят о массе и энергии частицы.
П.Л. Капица и Д.В. Скобельцын предложили поместить камеру в магнитное ноле. На заряженную частицу, движущуюся в магнитном поле, действует сила Лоренца, что приводит к искривлению трека. По форме трека и характеру его искривления можно вычислить импульс частицы и её масс у, а также определить знак заряда частоты.

Б) Пузырьковая камера Глезера (США) 1952 г.
Трек возникает в перегретой жидкости. В рабочем состоянии пузырьковая камера, как и камера Вильсона, оказывается в момент резкого скачка давления. Пузырьковые камеры также помещают в сильное магнитное поле, искривляющее траектории частиц.
Нейтральные частицы не оставляют треков, но тем не менее их тоже можно обнаружить с ПОМОЩЬЮ камеры Вильсона или пузырьковой камеры по вторичным эффектам. Так, если нейтральная частица распадается на две (или более) заряженные частицы, разлетающиеся в разные направления, то, исследуя треки вторичных частиц и определив их энергии и импульсы, можно по законам сохранения определить свойства первичной нейтральной частицы.
В) Метод толстостенных фотоэмульсий (1928 г., Мысовский и Жданов)
Он основан на использовании почернения зерен бромистого серебра, входящих в состав фотографичеекого слоя, под действием проходящих вблизи них заряженных частиц. После проявления фотоэмульсии в них можно наблюдать треки таких частим. Ядерные фотоэмульсии применяют в виде слоев толщиной от 0,5 до 1 мм. Это позволяет исследовать траектории частиц высоких энергий. Существенным преимуществом метода фотоэмульсии, по мимо простоты применения, является то, что с его помощью получают неисчезающий след частицы, который затем может быть тщательно изучен. Метод ядерных фотоэмульсий широко применяют при изучении свойств новых элементарных частиц и исследованиях космического излучения.
Метод счёта числа частиц. В качестве одного из первых и простейших приборов для регистрации частиц был использован экран, покрытый люминесцирующим составом. В той точке экрана, куда попадает частица с достаточно большой энергией, возникает вспышка – сцинтилляция.

А) Спинтарископ. Ещё в 1903 г. У. Крукс (англ.) обнаружил, что при попадании альфа-частиц на флуоресцирующие вещества они вызывают слабые световые вспышки - так называемые сцинтилляции. Каждая вспышка характеризовала действие одной частицы. Устройство простейшего прибора, предназначенного для регистрации отдельных альфа-частиц. Основными деталями спинтарископа являются экран, покрытый слоем сульфида цинка, и короткофокусная лупа. Альфа-радиоактивный препарат помещают на конце стержня примерно против середины экрана. При попадании альфа-частицы в кристалл сульфида цинка возникает вспышка света, которую можно зарегистрировать при наблюдении через лупу.
Процесс преобразования кинетической энергии быстрой заряженной частицы в энергию световой вспышки называется сцинтилляцией.
Б) Счётчики Гейгера- Мюллера (нем.) 1928 г.
Газоразрядные счётчики работают на принципе регистрации самостоятельного газового разряда, возникающего при полёте заряженной частицы через рабочий объём счётчика. В ОТЛИЧИе от ионизационной камеры, регистрирующей суммарную интенсивность пучка заряженных частиц, счётчик Гейгера Мюллера регистрирует каждую частицу отдельно. Каждая вспышка действует на фотокатод электронного умножителя и выбивает из него электроны. Последние, проходящие ряд каскадов умножителя, образуют на выходе импульс тока, который затем подается на вход усилителя и приводит в действие какой-либо счетчик. Интенсивность отдельных импульсов можно наблюдать на осциллографе. Определяют не только число частиц, но и распределение их по энергиям.
Ионизационная камера. Для измерения доз ионизирующих излучений применяются ионизационные камеры. Ионизационная камера представляет собой цилиндрический конденсатор, между электродами которого находится воздух или другой газ. С помощью источника постоянного напряжения между электродами камеры создаётся электрическое поле. В обычных условиях в воздухе свободных зарядов очень мало, поэтому измерительный прибор, включенный в цепь камеры, тока не обнаруживает. При облучении рабочего объёма ионизационной камеры ионизирующими излучениями происходит ионизация воздуха. Положительные и отрицательные ионы под действием электрического поля приходят в движение. Сила ионизационного тока в камере обычно составляет доли микроампера. Для измерения таких слабых ТОКОВ применяются специальные усилительные схемы.
С помощью ионизационных камер можно регистрировать любые виды ядерных излучений.

65. Открытие радиоактивности. Естественная радиоактивность. Виды радиоактивного излучения.

Радиоактивность есть результат процессов, протекающих внутри атомов вещества.
Самопроизвольный распад атомных ядер радиоактивных элементов, встре чающихся в естественных условиях, называется естественной радиоактивностью.

Виды: - лучи, полностью ионизированный атом гелия, проходя через вещество, тормозиться за счет ионизации и возбуждения атомов и молекул, а также диссоциации молекул, в электрическом и магнитном поле отклоняются слабо.

- лучи, поток электронов, чтобы задержать бета – излучение, нужен слой металла толщиной 3 см, в электрическом и магнитном поле отклоняются сильно.

- лучи, коротковолновые электромагнитные излучения, проникающая способность гораздо больше рентгеновского излучения, не отклоняются.

  • 12 класс.
Цель урока:
  • Объяснить учащимся устройство и принцип действия установок для регистрации и изучения элементарных частиц.
«Ничего не надо бояться – Надо лишь понять неизвестное». Мария Кюри. Актуализация опорных знаний:
  • Что такое «атом» ?
  • Каковы его размеры?
  • Какую модель атома предложил Томсон?
  • Какую модель атома предложил Резерфорд?
  • Почему модель Резерфорда назвали «Планетарной моделью строения атома»?
  • Каково строение атомного ядра?
Тема урока:
  • Методы наблюдения и регистрации элементарных частиц.
  • Атом – «неделимый» (Демокрит).
  • Молекула
  • вещество
  • микромир
  • макромир
  • мегамир
  • Классическая физика
  • Квантовая физика
Как изучать и наблюдать микромир?
  • Проблема!
  • Проблема!
Проблема:
  • Мы начинаем с вами изучать физику атомного ядра, рассмотрим их различные превращения и ядерных (радиоактивных) излучений. Эта область знаний имеет большое научное и практическое значение.
  • Многообразные применения в науке, медицине, технике, сельском хозяйстве получили радиоактивные разновидности атомных ядер.
  • Сегодня мы рассмотрим устройства и методы регистрации, которые позволяют обнаружить микрочастицы, изучить их столкновения и превращения, т е. дают всю информацию о микромире, а на основе этого и о мерах защиты от облучения.
  • Они дают нам информацию о поведении и характеристиках частиц: знак и величину электрического заряда, массу этих частиц, её скорость, энергию и т.д. С помощью регистрирующих приборов учёные смогли получить знания о «микромире».
Регистрирующий прибор – это сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу.
  • Регистрирующий прибор – это сложная макроскопическая система, которая может находиться в неустойчивом состоянии. При небольшом возмущении, вызванном пролетевшей частицей, начинается процесс перехода системы в новое, более устойчивое состояние. Этот процесс и позволяет регистрировать частицу.
  • В настоящее время используется много разнообразных методов регистрации частиц.
  • Счётчик Гейгера
  • Камера Вильсона
  • Пузырьковая камера
  • Фотографические
  • эмульсии
  • Сцинтилляционный
  • метод
  • Методы наблюдения и регистрации элементарных частиц
  • Искровая камера
  • В зависимости от целей эксперимента и условий, в которых он проводиться, применяются те или иные регистрирующие устройства, отличающиеся друг от друга по основным характеристикам.
В ходе изучения материала вы заполните таблицу.
  • Название метода
  • Принцип действия
  • Достоинства,
  • Недостатки
  • Назначение данного прибора
  • Используйте Ф – 12 класс, § 33, А.Е.Марон, Г.Я. Мякишев, Э Г Дубицкая
Счётчик Гейгера:
  • служит для подсчета количества радиоактивных частиц (в основном электронов).
  • Это стеклянная трубка, заполненная газом (аргоном), с двумя электродами внутри (катод и анод). При пролете частицы возникает ударная ионизация газа и возникает импульс электрического тока.
  • Устройство:
  • Назначение:
  • Достоинства: -1. компактность -2. эффективность -3. быстродействие -4. высокая точность (10ООО частиц/с).
  • Катод.
  • Стеклянная трубка
  • Где используется: - регистрация радиоактивных загрязнений на местности, в помещениях, одежды, продуктов и т.д. - на объектах хранения радиоактивных материалов или с работающими ядерными реакторами - при поиске залежей радиоактивной руды (U - уран, Th - торий).
  • Счётчик Гейгера.
1882г. нем физик Вильгельм Гейгер.
  • 1882г. нем физик Вильгельм Гейгер.
  • Различные виды счётчиков Гейгера.
Камера Вильсона:
  • служит для наблюдения и фотографирования следов от пролета частиц (треков).
  • Назначение:
  • Внутренний объем камеры заполнен парами спирта или воды в перенасыщенном состоянии: при опускании поршня уменьшается давление внутри камеры и понижается температура, в результате адиабатного процесса образуется перенасыщенный пар. По следу пролета частицы конденсируются капельки влаги и образуется трек – видимый след.
  • Стеклянная пластина
Изобрёл прибор в 1912 году английский физик Вильсон для наблюдения и фотографирования следов заряженных частиц. Ему в 1927 году присуждена Нобелевская премия.
  • Изобрёл прибор в 1912 году английский физик Вильсон для наблюдения и фотографирования следов заряженных частиц. Ему в 1927 году присуждена Нобелевская премия.
  • Советские физики П.Л.Капица и Д.В.Скобельцин предложили помещать камеру Вильсона в однородное магнитное поле.
Назначение:
  • При помещении камеры в магнитное поле по треку можно определить: энергию, скорость, массу и заряд частицы. По длине и толщине трека, по его искривлению в магнитном поле определяют характеристики пролетевшей радиоактивной частицы . Например, 1. альфа-частица дает сплошной толстый трек, 2. протон - тонкий трек, 3. электрон - пунктирный трек.
  • Различные виды камер Вильсона и фотографии треков частиц.
Пузырьковая камера:
  • Вариант камеры Вильсона.
  • При резком понижении поршня жидкость, находящаяся под высоким давлением, переходит в перегретое состояние. При быстром движении частицы по следу образуются пузырьки пара, т. е. жидкость закипает, виден трек.
  • Преимущества перед камерой Вильсона: - 1. большая плотность среды, следовательно короткие треки - 2. частицы застревают в камере и можно проводить дальнейшее наблюдение частиц -3. большее быстродействие.
  • 1952 год. Д.Глейзер.
  • Различные виды пузырьковой камеры и фотографии треков частиц.
Метод толстослойных фотоэмульсий:
  • 20-е г.г. Л.В.Мысовский, А.П.Жданов.
  • - служит для регистрации частиц - позволяет регистрировать редкие явления из-за большого время экспозиции . Фотоэмульсия содержит большое количество микрокристаллов бромида серебра. Влетающие частицы ионизируют поверхность фотоэмульсий. Кристаллики AgВr (бромида серебра) распадаются под действием заряженных частиц и при проявлении выявляется след от пролета частицы - трек. По длине и толщине трека можно определить энергию и массу частиц.
метод имеет такие преимущества:
  • метод имеет такие преимущества:
  • 1. Им можно регистрировать траектории всех частиц, пролетевших сквозь фотопластинку за время наблюдения.
  • 2. Фотопластинка всегда готова для применения, (эмульсия не требует процедур, которые приводили бы ее в рабочее состояние).
  • 3. Эмульсия обладает большой тормозящей способностью, обусловленной большой плотностью.
  • 4. Он дает неисчезающий след частицы, которую потом можно, тщательно изучать.
Недостатки метода: 1. длительность и 2. сложность химической обработки фотопластинок и 3. главное - много времени требуется для рассмотрения каждой пластинки в сильном микроскопе.
  • Недостатки метода: 1. длительность и 2. сложность химической обработки фотопластинок и 3. главное - много времени требуется для рассмотрения каждой пластинки в сильном микроскопе.
Сцинтилляционный метод
  • В этом методе (Резерфорда) для регистрации используются кристаллы. Прибор состоит из сцинтиллятора, фотоэлектронного умножителя и электронной системы.
«Методы регистрации заряженных частиц». (видеоролик). Методы регистрации частиц:
  • Метод сцинтилляций
  • Метод ударной ионизации
  • Конденсация пара на ионах
  • Метод толстослойных фотоэмульсий
  • Частицы, попадающие на экран, покрытый специальным слоем, вызывают вспышки, которые можно наблюдать с помощью микроскопа.
  • Газоразрядный счётчик Гейгера
  • Камера Вильсона и пузырьковая камера
  • Ионизирует поверхность фотоэмульсий
  • Повторим:
Рефлексия:
  • 1. Какую тему урока мы сегодня изучали?
  • 2 Какую цели мы поставили перед изучением темы?
  • 3. Мы с вами достигли поставленной цели?
  • 4. В чём смысл девиза, который мы взяли к уроку нашему?
  • 5. Вам тема урока понятна, для чего мы с ней знакомились?
Итог урока:
  • 1. Проверяем вместе вашу работу по таблице, оцениваем вместе, ставим оценку, учитывая вашу работу на уроке.
Используемая литература:
  • 1. интернет – ресурсы.
  • 2. Ф -12 кл,А.Е.Мякишев, Г.Я.Мякишев, Э.Г.Дубицкая.