Эоны эры периоды таблица. Геохронологическая история земли. Протерозой и архей

Геологам приходится иметь дело с толщами горных пород, накопившимися за длительную геологическую историю планеты. Необходимо знать, какие из слагающих изучаемую территорию пород моложе, а какие древнее, в какой последовательности они формировались, к каким интервалам геологической истории относится время их образования, а также уметь сопоставлять по возрасту удалённые друг от друга толщи горных пород.

Учение о последовательности формирования и возрасте горных пород называется геохронологией. Различаются методы относительной и методы абсолютной геохронологии.

Относительная геохронология

Методы относительной геохронологии - методы определения относительного возраста горных пород, которые лишь фиксируют последовательность образования горных пород относительно друг друга.

Эти методы базируются на нескольких простых принципах. В 1669 г. Николо Стено сформулировал принцип суперпозиции, гласящий, что в ненарушенном залегании каждый вышележащий слой моложе нижележащего . Обратим внимание, что в определении подчёркивается применимость принципа только в условиях ненарушенного залегания.

Метод определения последовательности образования слоёв, базирующийся на принципе Стено, часто называют стратиграфическим. Стратиграфия - раздел геологии, занимающийся изучением последовательности образования и расчленением толщ осадочных, вулканогенно-осадочных и метаморфических пород, слагающих земную кору.

Следующий важнейший принцип, известный как принцип пересечений , сформулирован Джеймсом Хаттоном. Этот принцип гласит, что любое тело, пересекающее толщу слоев, моложе этих слоев .

Нужно отметить и ещё один важный принцип, гласящий, что время преобразования или деформации пород моложе, чем возраст образования этих пород .

Рассмотрим использование этих принципов на примере толщ осадочных пород, прорванных несколькими секущими магматическими телами.

Последовательность событий следующая. Первоначально происходило накопление осадочных толщ нижнего слоя (1), затем, последовательно накопление вышележащих слоев (2, 3, 4, 5), каждый из которых моложе нижележащего. Накопление осадочных пород в подавляющем большинстве случаев происходит в форме горизонтально лежащих слоев, так первоначально залегали и сформированные слои (1-5). Позднее эти толщи были деформированы (6), и в них внедрилось тело магматических пород 7. Затем, вновь горизонтально, началось накопление вышележащего слоя, залегающего на и внедрившемся магматическом теле. При этом, учитывая, что образующийся слой лежит на выровненной горизонтальной поверхности, очевидно, что его накоплению предшествовало выравнивание территории – её размыв (8). Вслед за размывом территории накопился следующий слой (9). Наиболее молодым образованием является магматическое тело 10.
Подчеркнём, что, рассматривая историю геологического развития территории, разрез которой изображён на рисунке, мы пользовались исключительно относительным временем, определяя лишь последовательность образования тел.

Ещё одна большая группа методов относительной геохронологии – биостратиграфические методы . Эти методы основаны на изучении окаменелостей - ископаемых остатков организмов, заключённых в слоях горных пород: в разновозрастных слоях пород встречаются разные комплексы остатков организмов, характеризующие развитие флоры и фауны в ту или иную геологическую эпоху. В основе методов лежит принцип, сформулированный Уильямом Смитом: одновозрастные осадки содержат одни и те же или близкие остатки ископаемых организмов . Этот принцип дополняется ещё одним важным положением, гласящим, что ископаемые флоры и фауны сменяют друг друга в определённом порядке . Таким образом, в основе всех биостратиграфических методов лежит положение о непрерывности и необратимости изменения органического мира – закон эволюции Ч. Дарвина. Каждый отрезок геологического времени характеризуется определёнными представителями флоры и фауны. Определение возраста толщ горных пород сводится к сравнению найденных в них ископаемых с данными о времени существования этих организмов в геологической истории. В качестве грубой аналогии сущности метода можно привести всем известные методы определения возраста в археологии: если при раскопках обнаружены только каменные орудия труда, то культура относится к каменному веку, присутствие бронзовых орудий даёт основание для её отнесения к бронзовому веку и т.п.

Среди биостратиграфических методов долгое время оставался важнейшим метод руководящих форм. Руководящими формами называют остатки вымерших организмов соответствующие следующим критериям:

  • эти организмы существовали короткий промежуток времени,
  • были распространены на значительной территории,
  • их окаменелости части встречаются и легко определяются.

При определении возраста среди найденных в изучаемом слое ископаемых выбираются наиболее для него характерные, затем они сопоставляются с атласами руководящих форм, описывающими, какому интервалу времени свойственны те или иные формы. Первый из таких атласов был создан ещё в середине XIX века палеонтологом Г. Бронном.

На сегодняшний день основным в биостратиграфии является метод анализа органических комплексов . При применении этого метода вывод об относительном возрасте строится на сведениях обо всём комплексе окаменелостей, а не на находках единичных руководящих форм, что значительно повышает точность.

В ходе геологических исследований стоят задачи не только расчленения толщ по возрасту и отнесения их к какому-либо интервалу геологической истории, но и сопоставления – корреляции – удалённых друг от друга одновозрастных толщ. Наиболее простым методом выявления одновозрастных толщ является прослеживание слоёв на местности от одного обнажения к другому. Очевидно, что этот метод эффективен только в условиях хорошей обнажённости. Более универсальным является биостратиграфический метод сопоставления характера органических остатков в удалённых разрезах – одновозрастные слои обладают одинаковым комплексом окаменелостей. Этот метод позволяет проводить региональную и глобальную корреляцию разрезов.

Принципиальная модель использования окаменелостей для корреляции удалённых разрезов отражена на рисунке.

Одновозрастными являются слои, содержащие одинаковый комплекс окаменелостей

Абсолютная геохронология

Методы абсолютной геохронологии позволяют определить возраст геологических объектов и событий в единицах времени. Среди этих методов наиболее распространены методы изотопной геохронологии, основанные на подсчёте времени распада радиоактивных изотопов, заключенных в минералах (или, например, в остатках древесины или в окаменелых костях животных).

Сущность метода заключена в следующем. В состав некоторых минералов входят радиоактивные изотопы. С момента образования такого минерала в нём протекает процесс радиоактивного распада изотопов, сопровождающийся накоплением продуктов распада. Распад радиоактивных изотопов протекает самопроизвольно, с постоянной скоростью, не зависящей от внешних факторов; количество радиоактивных изотопов убывает в соответствии с экспоненциальным законом. Принимая во внимания постоянство скорости распада, для определения возраста достаточно установить количество оставшегося в минерале радиоактивного изотопа и количество образовавшегося при его распаде стабильного изотопа. Эта зависимость описывается главным уравнением геохронологии :

Для определения возраста используются многие радиоактивные изотопы: 238 U, 235 U, 40 K, 87 Rb, 147 Sm и др. Названия изотопно-геохронологических методов обычно образуются из названий радиоактивных изотопов и конечных продуктов их распада: уран-свинцовый, калий-аргоновый и т.д. Результаты определения возраста геологических объектов выражаются в 106 и 109 лет, или в значениях Международной системы единиц (СИ): Ma и Ga. Эта аббревиатура означает, соответственно, «млн. лет» и « млрд. лет» (от лат. Mega anna – млн. лет, Giga anna – млрд. лет ).

Рассмотрим определение возраста рубидий-стронциевым изохронным методом . В результате распада радиоактивного изотопа 87 Rb происходит образование нерадиоактивного продукта распада – 87 Sr, постоянная распада составляет 1,42*10 -11 лет -1 . Применение изохронного метода предполагает анализ нескольких образцов, взятых из одного и того же геологического объекта, что повышает точность определения возраста и позволяет рассчитать исходный изотопный состав стронция (используемый для определения условий формирования породы).

В ходе лабораторных исследований определяются содержания 87 Rb и 87 Sr, при этом содержание последнего складывается из суммы стронция, изначально содержащегося в минерале (87 Sr) 0 , и стронция, возникшего в процессе радиоактивного распада 87 Rb за период существования минерала:

На практике измеряются не содержания указанных изотопов, а их отношения к стабильному изотопу 86Sr, что даёт более точные результаты. Вследствие этого уравнение приобретает вид

В полученном уравнении имеются два неизвестных: время t и начальное отношение изотопов стронция. Для решения задачи анализируются несколько образцов, результаты наносятся в виде точек на график в координатах 87 Sr/ 86 Sr – 87 Rb/ 86 Sr. В случае корректно отобранных проб все точки ложатся вдоль одной прямой – изохроны (следовательно, имеют один и тот же возраст). Возраст анализируемых образцов рассчитывается по величине угла наклона изохроны, а начальное стронциевое отношение определяется по пересечению изохронной оси 87 Sr/ 86 Sr.

В случае если на графике точки не ложатся на одну линию можно говорить о некорректности подбора проб. Во избежание этого необходимо соблюдать следующие главные условия:

  • образцы должны отбираться из одного геологического объекта (т.е. быть заведомо одновозрастными);
  • в ии следуемых породах не должно быть признаков наложенных преобразований, которые могли привести к перераспределению изотопов;
  • образцы должны обладать одинаковым изотопным составом стронция во время возникновения (недопустимо использование различных пород при построении одной изохроны).

Не останавливаясь на методики определения возраста другими методами, отметим лишь особенности некоторых из них.

В настоящее время наиболее точным считается самарий – неодимовый метод , принятый в качестве стандарта, с которым сравниваются данные других методов. Это связано с тем, что в силу геохимических особенностей данные элементы наименее подвержены влиянию наложенных процессов, часто значительн о искажающих или сводящих на нет результаты определений возраста. Метод основан на распаде изотопа 147 Sm с образованием в качестве конечного продукта распада 144 Nd.

Калий – аргоновый метод основан на распаде радиоактивного изотопа 40 К. Этот метод давно и широко используется для определения возраста всех генетических типов горных пород. Он наиболее эффективен при определении времени формирования осадочных пород и минералов, например, глауконита. Применительно к магматическим и особенно метаморфическим породам, затронутым наложенными изменениями, этот метод часто даёт «омоложенные» датировки, что связано с потерей подвижного аргона.

Радиоуглеродный метод основан на распаде изотопа 14 С, образующегося в верхних слоях атмосферы в результате воздействия космического излучения на атмосферные газы (азот, аргон, кислород). В последствии 14 С, как и нерадиоактивный изотоп углерода, образует углекислый газ СО 2 , и в его составе вовлекается в фотосинтез, оказываясь таким образом в составе растений и, далее, пищевой цепочке передается животным. В гидросферу 14 С попадает в результате обмена СО 2 между атмосферой и Мировым океаном, далее он оказывается в костях и карбонатных раковинах водных обитателей. Интенсивное перемешивание воздушных масс в атмосфере и активное участие углерода в глобальном круговороте химических элементов приводит к выравниванию концентраций 14 С в атмосфере, гидросфере и биосфере. Для живых организмов равновесное состояние достигается при удельной активности 14 С, составляющей 13,56 ± 0.07 распадов в минуту на 1 грамм углерода. Если организм умирает, то прекращается поступление 14С; в результате радиоактивного распада (перехода в нерадиоактивный 14 N) удельная активность 14 С уменьшается. Измерив значение активности в пробе и сопоставив её со значением удельной активности в живой ткани, несложно рассчитать время прекращения жизнедеятельности организма по формуле

///////////////

Радиоуглеродного датирование позволяет определять возраст образцов, содержащих углерод (кости, зубы, раковины, древесина, уголь и т.д.) возрастом до 70 тыс. лет. Это определяет его использование в четвертичной геологии и, особенно, в археологии.

В завершение рассмотрения методов изотопной геологии следует отметить, что, несмотря на получение «абсолютных», выраженных в годах, датировок, мы имеет дело с модельным возрастом – полученные результаты неизбежно содержат некоторую ошибку и, более того, продолжительность астрономического года в ходе длительной геологической истории менялась.

Ещё одна группа методов абсолютной геохронологии представлена сезонно-климатическими методами . Примером такого метода служит варвохронология – метод абсолютной геохронологии, основанный на подсчёте годичных слоёв в «ленточных» отложениях приледниковых озёр. Для приледниковых озёр характерными отложениями служат так называемые «ленточные глины» - чётко слоистые осадки, состоящие из большого числа параллельных лент. Каждая лента – результат годичного цикла осадконакопления в условиях озёр, находящихся большую часть года в замерзшем состоянии. Она всегда состоит из двух слоёв. Верхний – зимний – слой представлен глинами темного цвета (за счёт обогащения органикой), образованного под ледяным покровом; нижний – летний – сложен более грубозернистыми светлоокрашенными осадками (в основном тонкими песками или алевро-глинистыми отложениями), образованными за счёт приносимого в озеро талыми ледниковыми водами материала. Каждая пара таких слойков соответствует 1 году.

Изучение ритмичности ленточных глин позволяет не только определять абсолютный возраст, но и проводить корреляцию расположенных неподалёку друг от друга разрезов, сопоставляя мощности слоёв.

На сходном принципе основан и подсчёт годичных слоёв в осадках соляных озёр, где летом, за счёт повышения испарения, происходит активное осаждение солей.

К недостаткам сезонно-климатических методов следует отнести их неуниверсальность.

Периодизация геологической истории. Cтратиграфическая и геохронологическая шкалы

Оперируя категорией относительного времени необходимо иметь универсальную шкалу периодизации истории. Так, применительно к истории человечества, мы употребляем выражения «до нашей эры», «в эпоху Возрождения», «в XX веке» и т.п., относя какое-либо событие или предмет материальной культуры к определённому временному интервалу. Аналогичный подход принят и в геологии, для этих целей разработаны Международная геохронологическая шкала и Международная стратиграфическая шкала.

Основную информацию о геологической истории Земли несут слои горных пород, в которых, как на страницах каменной летописи, запечатлены происходившие на планете изменения и эволюция органического мира (последняя «запечатлена» в комплексах окаменелостей, содержащихся в разновозрастных слоях). Слои горных пород, занимающие определённое положение в общей последовательности напластований и выделяемые на основании присущих им особенностей (чаще - комплекса ископаемых), являются стратиграфическими подразделениями . Горные породы, слагающие стратиграфические подразделения, формировались на протяжении определённого интервала геологического времени, и, следовательно, отражают эволюцию земной коры и органического мира за этот промежуток времени.

– шкала, показывающая последовательность и соподчинённость стратиграфических подразделений, слагающих земную кору и отражающих пройденные землёй этапы исторического развития. Объектом стратиграфической шкалы являются слои горных пород. Основа современной стратиграфической шкалы была разработана ещё в первой половине XIX века и была принята в 1881 г. на II сессии Международного геологического конгресса в Болонье. Позднее стратиграфическая шкала была дополнена геохронологической шкалой.

Геохронологическая шкала – шкала относительного геологического времени, показывающая последовательность и соподчинённость основных этапов геологической истории Земли и развития жизни на ней. Объектом геохронологической шкалы является геологическое время.

Шкала геологического времени (или геохронометрическая шкала) представляет собой последовательный ряд датировок нижних границ общих стратиграфических подразделений, выраженных в единицах времени (чаще в миллионах лет) и вычисленных с помощью методов абсолютного датирования.

Объектом геохронологической шалы служат геохронологические подразделения – интервалы геологического времени, в течение которого образовались горные породы, входящие в состав данного стратиграфического подразделения.

Всем стратиграфическим подразделениям соответствуют подразделения геохронологической шкалы.

При этом практически все стратиграфические подразделения ранга эонотема - система имеют единые общепринятые международные наименования.

Наиболее крупными стратиграфическими подразделениями являются акротемы и эонотемы. Архейскую и протерозойскую акротемы объединяют под названием «докембрий» (т. е. толщи пород, накопившиеся до кембрийского периода – первого периода фанерозоя) или «криптозой». Рубежом докембрия и фанерозоя служит появление в слоях горных пород остатков скелетных организмов. В докембрии органические остатки редки, поскольку мягкие ткани быстро разрушаются, не успев захорониться. Сам термин «криптозой» образовано при слиянии корней слов «криптос» - скрытый и «зоэ» - жизнь . При расчленении докембрийских толщ на дробные стратиграфические подразделения важнейшую роль имеют методы изотопной геохронологии, поскольку органические остатки редки или вообще отсутствуют, определяются с трудом и, главное, не подвержены быстрой эволюции (однотипные комплексы микрофауны остаются неизменными на протяжении огромных интервалов времени, что не позволяет расчленять толщи по этому признаку).

Эонотемы включают в свой состав эратемы. Эратема , или группа - отложени, образовавшиеся в течение эры ; продолжительность эр в фанерозое составляет первые сотни миллионов лет. Эратемы отражают крупные этапы развития Земли и органического мира. Границы между эратемами соответствуют переломным рубежам в истории развития органического мира. В фанерозое выделяют три эратемы: палеозойскую, мезозойскую и кайнозойскую.

Эратемы, в свою очередь, включают в свой состав системы. Система – это отложения, образовавшиеся в течение периода ; длительность периодов составляет десятки миллионов лет. Одна система от другой отличается комплексами фауны и флоры на уровне надсемейств, семейств и родов. В фанерозое выделяются 12 систем: кембрийская, ордовикская, силурийская, девонская, каменноугольная (карбоновая), пермская, триасовая, юрская, меловая, палеогеновая, неогеновая и четвертичная (антропогеновая). Названия большинства систем происходят от географических названий тех местностей, где они были впервые установлены. Для каждой системы на геологических картах приняты определенный цвет, являющийся международным, и индекс, образованный начальной буквой латинского названия системы.

Отдел - часть системы, соответствующая отложениям, образовавшимся в течение одной эпохи ; длительность эпох обычно составляет первые десятки миллионов лет. Отличия между отделами проявляются в различии фауны и флоры на уровне родов или групп. Названия отделов даны по положению их в системе: нижний, средний, верхний или только нижний и верхний; эпохи соответственно называют ранней, средней, поздней.

В составе отдела выделяются ярусы. Ярус - отложения, образовавшиеся в в течение века ; продолжительность веков составляет несколько миллионов лет.

Наряду с основными подразделениями стратиграфической и геохронологической шкал применяются региональные и местные подразделения.

К региональным стратиграфическим подразделениям относятся горизонт и лона.

Горизонт - основное региональное подразделение стратиграфической шкалы, объединяющее одновозрастные отложения, характеризующиеся определенным комплексом литологических и палеонтологических признаков. Горизонтам присваиваются географические названия, соответствующие местам, где они наиболее хорошо представлены и изучены. Геохронологическим эквивалентом служит время . Например, хапровский горизонт, распространённый на побережье Таганрогского залива Азовского моря, соответствует толще речных песков, сформировавшихся в конце неогенового периода. Стратотип (наиболее представительный разрез стратиграфического горизонта, являющийся его эталоном) этого горизонта расположен у ст. Хапры. Добавим, что термин «горизонт», употребляемый без географического названия, понимается как слой или пачка слоёв, выделяемых на основании каких-либо особенностей (палеонтологических или литологических), то есть является обозначением свободного пользования.

Лона является частью горизонта выделяемой по комплексу фауны и флоры, характерному для данного региона, и отражает определенную фазу развития органического мира данного региона. Название лоны даётся по виду-индексу. Геохронологическим эквивалентом лоны является время.

Местные стратиграфические подразделения представляют собой толщи пород, выделяемые по ряду признаков, в основном по литологическому или петрографическому составу.

Комплекс - самое крупное местное стратиграфическое подразделение. Комплекс имеет очень большую мощность, сложный состав горных пород, сформированных в течение какого-то крупного этапа развития территории. Комплексу присваивается географическое название по характерному месту его развития. Чаще всего комплексы выделяются при расчленении метаморфических толщ.

Серия охватывает достаточно мощную и сложную по составу толщу горных пород для которых имеются какие-то общие признаки: сходные условия образования, преобладание определенных типов горных пород, близкая степень деформаций и метаморфизма и т.д. Серии обычно соответствуют единому крупному циклу развития территории.

Основной единицей из местных стратиграфических подразделений представляет собой является свита. Свита представляет собой толщу пород, образованных в определенной физико-географической обстановке и занимающих установленное стратиграфическое положение в разрезе. Главные особенности свиты - наличие устойчивых литологических признаков на всей площади ее распространения и четкая выраженность границ. Свое название свита получает по географическому местонахождению стратотипа.

Границы местных стратиграфических подразделений часто не совпадают с границами подразделений единой стратиграфической шкалы.

В процессе работы геологом часто приходится использовать также вспомогательные стратиграфические подразделения - толща, пачка, слой, залежь, и т. д., называемые обычно по характерным породам, цвету, литологическим особенностям или по характерным органическим остаткам (толща известняков, слои с Matra fabriana и т.п.).

Одна из главных задач геологических исследований это определение возраста горных пород слагающих земную кору. Различают относительный и абсолютный их возраст. Существует несколько методов определения относительного возраста горных пород: стратиграфический и палеонтологический.

Стратиграфический метод основан на анализе осадочных пород (морских и континентальных) и определения последовательности их образования. Пласты, лежащие внизу древнее, наверху моложе. Этим методом устанавливается относительный возраст горных пород в определенном геологическом разрезе на небольших участках.

Палеонтологический метод заключается в изучении окаменелых остатков органического мира. Органический мир в ходе геологической истории претерпевал значительные изменения. Изучение осадочных пород в вертикальном разрезе земной коры показало, что определенному комплексу слоев соответствует определенный комплекс растительных и животных организмов.

Таким образом, окаменелости растительного и животного происхождения можно использовать для определения возраста горных пород. Окаменелостями называются остатки вымерших растений и животных, а также следы их жизнедеятельности. Для определения геологического возраста имеют значение не все организмы, а только так называемые руководящие, т. е. те организмы, которые в геологическом понимании существовали недолго.

Руководящие окаменелости должны иметь небольшое вертикальное и широкое горизонтальное распространение, а также хорошую сохранность. В каждый геологический период развивалась определенная группа животных и растений. Окаменелые остатки их встречаются в отложениях соответствующего возраста. В древних пластах земной коры обнаруживаются остатки примитивных организмов, в более молодых высокоорганизованных. Развитие органического мира происходило по восходящей линии; от простых организмов к сложным. Чем ближе к нашему времени, тем больше сходства с современным органическим миром. Палеонтологический метод наиболее точный и широко применяемый.

Состав таблицы

Геохронологическая шкала создавалась для определения относительного геологического возраста пород. Абсолютный возраст, измеряемый в годах, имеет для геологов второстепенное значение. Время существования Земли разделено на два главных интервала: фанерозой и докембрий (криптозой) по появлению в осадочных породах ископаемых остатков. Криптозой - время скрытой жизни, в нём существовали только мягкотелые организмы, не оставляющие следов в осадочных породах. Фанерозой начался с появлением на границе эдиакария (венд) и кембрия множества видов моллюсков и других организмов, позволяющих палеонтологии расчленять толщи по находкам ископаемой флоры и фауны.

Другое крупное деление геохронологической шкалы имеет своим истоком самые первые попытки разделить историю Земли на крупнейшие временны́е интервалы. Тогда вся история была разделена на четыре периода: первичный, который эквивалентен докембрию, вторичный - палеозой и мезозой, третичный - весь кайнозой без последнего четвертичного периода. Четвертичный период занимает особое положение. Это самый короткий период, но в нём произошло множество событий, следы которых сохранились лучше других.

На основании стратиграфического и палеонтологического методов построена стратиграфическая шкала, представленная на рис.1, в которой горные породы, слагающие земную кору, расположены в определенной последовательности в соответствии с их относительным возрастом. В этой шкале выделены группы, системы, отделы, ярусы. На основе стратиграфической шкалы разработана геохронологическая таблица, в которой время образования групп, систем, отделов и ярусов называется эрой, периодом, эпохой, веком.

Рис.1. Геохронологическая шкала

Вся геологическая история Земли разделена на 5 эр: архейскую протерозойскую, палеозойскую, мезозойскую, кайнозойскую. Каждая эр разделена на периоды, периоды на эпохи, эпохи на века.

Особенности определения возраста горных пород

Абсолютный геологический возраст — время, протекшее от какого-либо геологического события до современной эпохи, исчисляемое в абсолютны единицах времени (в миллиардах, миллионах, тысячах и т. д. лет). Существует несколько методов определения абсолютного возраст горных пород.

Седиментационный метод сводится к определению количества обломочног материала, ежегодно сносимого с поверхности суши и откладываемого на дне моря. Зная, сколько накапливается осадков на дне моря в течение года и измерив мощность осадочных толщ, накопившихся в отдельные геологические периоды, можно узнать продолжительность времени, потребовавшегося на накопление этих осадков.

Седиментационный метод не совсем точен. Неточность его объясняется неравномерностью процессов осадконакопления. Скорость осадконакопления непостоянна, она меняется, усиливаясь и достигая максимума в периоды тектонической активности земной коры, когда земная поверхность имеет сильно расчлененные формы, благодаря чему усиливаются денудационные процессы и в результате поступает больше осадков, в морские бассейны. В периоды менее активных тектонических движений земной коры денудационные процессы ослабевают и количество осадков уменьшается. Этот метод дает лишь ориентировочное представление о геологическом возрасте Земли.

Радиологические методы самые точные методы определения абсолютного возраста горных пород. Они основаны на использовании радиоактивного распада изотопов урана, радия, калия и других радиоактивных элементов. Скорость радиоактивного распада постоянна и не зависит от внешних условий. Конечными продуктами, распада урана являются гелий и свинец РЬ206. Из 100 граммов урана за 74 млн. лет образуется 1 грамм (1%) свинца. Если определить количество свинца (в процентах) в массе урана, то умножением на 74 млн. получают возраст минерала, а по нему и время существования геологического пласта.

В последнее время стали применять радиоактивный метод, который получил название калиевого или аргонового. В этом случае используется изотоп калия с атомным весом 40. Калиевый метод имеет то преимущество, что калий широко распространен в природе. В процессе распада калия образуются кальций и газ аргон. Недостатком радиологического метода является ограниченная возможность его применения главным образом для определения возраста магматических и метаморфических пород.

Геохронологическая таблица - это один из способов представления этапов развития планеты Земля, в частности жизни на ней. В таблицу записывают эры, которые подразделяются на периоды, указывается их возраст, продолжительность, описываются основные ароморфозы флоры и фауны.

Часто в геохронологических таблицах более ранние, т. е. более старые, эры записываются внизу, а более поздние, т. е. более молодые, – вверху. Ниже представлены данные о развитии жизни на Земле в естественном хронологическом порядке: от старых к новым. Табличная форма опущена ради удобства.

Архейская эра

Началась примерно 3500 млн (3,5 млрд) лет назад. Длилась около 1000 млн лет (1 млрд).

В архейскую эру появляются первые признаки жизни на Земле – одноклеточные организмы.

По современным оценкам возраст Земли составляет более 4 млрд лет. До архея была катархейская эра, когда жизни еще не было.

Протерозойская эра

Началась примерно 2700 млн (2,7 млрд) лет назад. Продолжалась более 2 млрд. лет.

Протерозой – эра ранней жизни. В слоях, принадлежащих этой эре, находят редкие и малочисленные органические остатки. Однако они принадлежат всем типам беспозвоночны животных. Также скорее всего появляются первые хордовые - бесчерепные.

Палеозойская эра

Началась около 570 млн лет назад, длилась более 300 млн лет.

Палеозой - древняя жизнь. Начиная с него процесс эволюции изучен лучше, т. к. остатки организмов из более верхних геологических слоев более доступны. Отсюда принято подробно рассматривать каждую эру, отмечая изменения органического мира для каждого периода (хотя свои периоды выделяют и в архее и в протерозое).

Кембрийский период (кембрий)

Длился около 70 млн. лет. Процветают морские беспозвоночные, водоросли. Появляется множество новых групп организмов - происходит так называемый кембрийский взрыв.

Ордовикский период (ордовик)

Длился 60 млн лет. Расцвет трилобитов, ракоскорпионов. Появляются первые сосудистые растения.

Силур (30 млн лет)

  • Расцвет кораллов.
  • Появление щитковых – бесчелюстных позвоночных.
  • Появление растений псилофитов, вышедших на сушу.

Девон (60 млн лет)

  • Расцвет щитковых.
  • Появление кистеперых рыб и стегоцефалов.
  • Распространение на суше высших споровых.

Каменноугольный период

Длился около 70 млн лет.

  • Расцвет земноводных.
  • Появление первых пресмыкающихся.
  • Появление летающих форм членистоногих.
  • Снижение численности трилобитов.
  • Расцвет папоротникообразных.
  • Появление семенных папоротников.

Пермь (55 млн)

  • Распространение пресмыкающихся, возникновение зверозубых ящеров.
  • Вымирание трилобитов.
  • Исчезновение каменноугольных лесов.
  • Распространение голосеменных.

Мезозойская эра

Эра средней жизни.

Геохронология и стратиграфия

Началась 230 млн лет назад, длилась около 160 млн лет.

Триасовый период

Длительность - 35 млн лет. Расцвет пресмыкающихся, появление первых млекопитающих и настоящих костистых рыб.

Юрский период

Длился около 60 млн лет.

  • Господство пресмыкающихся и голосеменных растений.
  • Появление археоптерикса.
  • В морях много головоногих моллюсков.

Меловой период (70 млн лет)

  • Появление высших млекопитающих и настоящих птиц.
  • Широкое распространение костистых рыб.
  • Сокращение папоротников и голосеменных.
  • Появление покрытосеменных.

Кайнозойская эра

Эра новой жизни. Началась 67 млн лет назад, длится соответственно столько же.

Палеоген

Длился около 40 млн лет.

  • Появление хвостатых лемуров, долгопятов, парапитеков и дриопитеков.
  • Бурный расцвет насекомых.
  • Продолжается вымирание крупных пресмыкающихся.
  • Исчезают целые группы головоногих моллюсков.
  • Господство покрытосеменных растений.

Неоген (около 23,5 млн лет)

Господство млекопитающих и птиц. Появились первые представители рода Люди (Homo).

Антропоген (1,5 млн лет)

Появление вида человека разумного (Homo Sapiens). Животный и растительный мир принимает современный облик.

В 1881 г. на II Международном геологическом конгрессе в г. Болонье была принята Международная геохронологическая шкала, являющаяся широким системным обобщением работ многих поколений геологов в различных областях геологических знаний. В шкале отражены хронологическая последовательность временных подразделений, в течение которых сформировались определенные комплексы отложений и эволюция органического мира, т. е. в международной геохронологической шкале отражена естественная периодизация истории Земли. Построена она на принципе рангового соподчинения временных и стратиграфических единиц от более крупных к более мелким (табл. 6.1).

Каждому временному подразделению отвечает комплекс отложений, выделенный в соответствии с изменением органического мира и называющийся стратиграфическим подразделением.

Поэтому существуют две шкалы: геохронологическая и стратиграфическая (табл. 6.2, 6.3, 6.4). В этих шкалах вся история Земли разделена на несколько эонов и соответствующих им эонотем.

Геохронологические и стратиграфические шкалы постоянно меняются и совершенствуются. Шкала, приведенная в табл. 6.2, имеет ранг международной, но и у нее есть варианты: вместо каменноугольного периода в европейской шкале, в США выделяют два периода: миссисипский, следующий за девонским, и пенсильванский, предшествующий пермскому.

Каждой эре (периоду, эпохе и т. д.) свойствен свой комплекс живых организмов, эволюция которых является одним из критериев построения стратиграфической шкалы.

В 1992 г. Межведомственным стратиграфическим комитетом была опубликована современная стратиграфическая (геохронологическая) шкала, которая рекомендуется для всех геологических организаций нашей страны (см. табл. 6.2, 6.3, 6.4), но она не является общепринятой в мировом масштабе; наибольшие разногласия существуют для докембрия и для четвертичной системы.



Примечания.

Здесь выделены:

1. Архейский эон (AR) (древнейшая жизнь), которому соответствует стратиграфическая толша пород - архейская эонотема.

2. Протерозойский эон (PR) (первичная жизнь) - ему соответствует стратиграфическая толща пород - протерозойская эонотема.

3. Фанерозойский эон, подразделяющийся на три эры:

3.1 - палеозойская эра (PZ) (эра древней жизни) - ей соответствует палеозойская толща пород - палеозойская эратема (группа);

3.2 - мезозойская эра (MZ) (эра средней жизни) - ей соответствует мезозойская толща пород - мезозойская эратема (группа);

3.3 - кайнозойская эра (KZ) (эра новой жизни) - ей соответствует кайнозойская толща пород - кайнозойская эратема (группа).

Архейский эон разделен на две части: ранний (древнее 3500 млн лет) и поздний архей. Протерозойский эон тоже разделен на две части: ранний и поздний протерозой; в последнем выделяется рифей (R) (по древнему названию Урала - Ripheus) и вендский период (V) - по имени древнего славянского племени «веды» или «венеды».

Фанерозойские эон и эонотема подразделяются на три эры (эратемы) и 12 периодов (систем). Название периодам обычно присваивается по наименованию местности, где они впервые были выделены и наиболее полно описаны.

В палеозойской эре (эратеме) выделены соответственно.

1. Кембрийский период (6) - кембрийская система (Є) - по древнему названию провинции Уэльс в Англии - Cambria;

2. Ордовикский период (О) - ордовикская система (О) - по названию древних племен Англии, населявших те районы, - «мордовиков»;

3. Силурийский период (S) - силурийская система (S) - по названию древних племен Англии - «силуров»;

4. Девонский период (D) - девонская система (D) - по названию графства Девоншир в Англии;

5. Каменноугольный (карбоновый) период (С) - каменноугольная (карбоновая) система (О - по широкому развитию в этих отложениях залежей каменного угля;

6. Пермский период (P) - пермская система (P) - по названию пермской губернии в России.

В мезозойской эре (эратеме) выделены соответственно.

1. Триасовый период (T) - триасовая система (T) - по делению периода (системы) на три части;

2) Юрский период (J) - юрская система (J) - по названию Юрских гор в Швейцарии;

3. Меловой период (К) - меловая система (К) - по широкому развитию в отложениях этой системы писчего мела.

В кайнозойской эре (эратеме) выделены соответственно.

1. Палеогеновый период (P) - палеогеновая система (P) - наиболее древняя часть кайнозойской эры;

2. Неогеновый период (N) - неогеновая система (N) - новорожденные;

3. Четвертичный период (Q) - четвертичная система (Q) - по предложению акад.

Геохронологическая шкала

А.А. Павлова, называемая иногда антропогеном.

Индексы (символы) эр (эратем) обозначаются двумя первыми буквами латинской транскрипции, а периодов (систем) - по первой букве.

На геологических картах и разрезах для удобства изображения каждой возрастной системе присвоен определенный цвет. Периоды (системы) разделены соответственно на эпохи (отделы). Длительность геологических периодов неодинакова - от 20 до 100 млн лет. Исключение составляет четвертичный период - 1,8 млн лет, но он еще не закончился.

Ранние, средние, поздние эпохи соответствуют нижним, средним, верхним отделам. Эпох (отделов) может быть две или три. Индексам эпох (отделов) соответствует индекс своих периодов (систем) с добавлением цифр справа внизу - 1,2,3. Например, 5, - раннесилурийская эпоха, a S2 - позднесилурийская эпоха. Для цветового обозначения эпох (отделов) используется цвет своих периодов (систем) для более ранних (поздних) - более темных оттенков. Эпохи (отделы) юрского периода и кайнозойской эры сохранили собственные названия. Стратиграфические и геохронологические единицы кайнозойской эры (группы) имеют свои названия: P1 - палеоцен, P2 - эоцен, P3 - олигоцен, N1 - миоцен, N2 - плиоцен, QI, QII, QIII - эпохи (отделы) ранне- (нижне-), средне- (средне-), позднечетвертичная (верхнечетвертичная) - вместе называются плейстоценом, a Q4 - голоценом.

Следующими и более дробными единицами геохронологической и стратиграфической шкал являются век (ярус) продолжительностью от 2 до 10 млн лет. Названия им присваиваются географические.

1. Геологическая шкала времени

1.5. Геохронологическая и стратиграфическая шкалы.

Необратимость времени

3. Естествознание эпохи средневековья

Список использованной литературы

1. Геологическая шкала времени

Физические, космологические, химические концепции подводят вплотную к представлениям о Земле, ее происхождении, строении и разнообразнейших свойствах. Комплекс наук о Земле обычно называют геологией (греч. ge – Земля). Земля- это место и необходимое условие существования человечества. По этой причине геологические концепции имеют для человека насущнейшее значение. Нам предстоит уяснить характер их эволюции. Геологические концепции возникают не самопроизвольно, они являются итогом кропотливейших научных изысканий.

Земля – уникальный космический объект. В его изучении центральное место занимает идея эволюции Земли. С учетом этого обратимся, прежде всего, к такому важному количественно-эволюционному параметру Земли, как ее время, геологическое время.

Выработка научных концепций о геологическом времени осложняется тем обстоятельством, что время жизни человеческого индивидуума составляет ничтожную долю возраста Земли (ок. 4,6 * 109 лет). Простая экстраполяция актуального геологического времени в глубины прошлого геологического времени ничего не дает. Чтобы получить сведения о геологическом прошлом Земли, необходимы какие-то особые концепции. Существуют самые различные способы осмысления геологического времени, главные среди них – литологические, биостратиграфические и радиологические.

Литологическая концепция геологического времени была впервые разработана датским врачом и натуралистом Н. Стенсеном (Стено). Согласно концепции Стено (1669), в серии нормально залегающих пластов вышележащих пласт моложе нижележащих, а секущие их трещины и минеральные жилы еще моложе. Главная идея Стено такова: слоистая структура пород поверхности Земли представляет собой пространственное отображение геологического времени, которое, разумеется, также обладает определенной структурностью. В развитие идей Стено геологическое время определяют по накоплениям осадков в морях и океанах, речных отложений в приустьевых участках побережья, по высоте дюн, по толщам «ленточных» глин, возникающих у краев ледников в результате их таяния.

При биостратиграфическом осмыслении геологического времени во внимание принимаются останки древних организмов: фауны и флора, залегающие выше, считаются более молодыми. Эту закономерность установил англичанин У. Смит, который составил первую геологическую карту Англии с разделением горных пород по их возрасту (1813-1815). Важно, что в отличие от литологических слоев биостратиграфические признаки распространяются на большие расстояния и присутствуют по всей оболочке Земли в целом.

На основе лито- и биостратиграфических данных неоднократно делались попытки создать единую (био) стратиграфическую шкалу геологического времени. Однако на этом пути исследователи неизменно наталкивались на неопределимые трудности. По (био)стратиграфическим данным можно определить отношение «старше-моложе», но затруднительно определить на сколько лет один слой сложился раньше другого. Но задача упорядочения геологических событий требует введения не только порядковых, но и количественных (метрических) характеристик времени.

При радиологическом измерении времени, в так называемой изотопной хронологии, возраст геологических объектов определяется исходя из соотношения в них материнского и дочернего изотопов радиоактивного элемента. Идея радиологического измерения времени была предложена в начале ХХ в. П.Кюри и Э.Резерфордом.

Изотопная геохронология позволила использовать в процедурах измерения геологического времени не только порядковые определения типа «раньше — позже», но и количественные определения. В этой связи вводится шкала геологического времени, которую обычно представляют в различных версиях. Одна из них приводится ниже.

Интервалы геологического времени (начала периодов и эпох в миллионах лет от настоящего времени)

В названиях геологических периодов от ранней их классификации сохранились только два выражения: третичный и четвертичный. Часть названий геологических периодов связаны либо с местностями, либо с характером вещественных отложений. Так, девонский период характеризует возраст отложений, впервые изученных в графстве Девоншир в Англии. Меловой период характеризует возрастные особенности геологических отложений, содержащих много мела.

2. Необратимость времени

Время – это форма существования материи, выражающая порядок изменения объектов и явлений действительности. Характеризует реальную длительность действий, процессов, событий; обозначает промежуток между событиями.

В отличие от пространства, в каждую точку которого можно снова и снова возвращаться, время – необратимо и одномерно . Оно течет из прошлого через настоящее к будущему. Нельзя возвратиться назад в какую-либо точку времени, но нельзя и перескочить через какой-либо временной промежуток в будущее. Отсюда следует, что время составляет как бы рамки для причинно-следственных связей. Некоторые утверждают, что необратимость времени и его направленность определяются причиной связью, так как причина всегда предшествует следствию. Однако очевидно, что понятие предшествования уже предполагает время. Более прав поэтому Г. Рейхенбах, который пишет: «Не только временной порядок, но и объединенный пространственно-временной порядок раскрываются как упорядочивающая схема, управляющая причинными цепями, и, таким образом, как выражение каузальной структуры вселенной».

Необратимость времени в макроскопических процессах находит свое воплощение в законе возрастания энтропии. В обратимых процессах энтропия остается постоянной, в необратимых – возрастает. Реальные же процессы всегда необратимы. В замкнутой системе максимально возможная энтропия соответствует наступлению в ней теплового равновесия: разности температур в отдельных частях системы исчезают и макроскопические процессы становятся невозможными. Вся присущая системе энергия превращается в энергию неупорядоченного, хаотического движения микрочастиц, и обратный переход тепла в работу невозможен.

Выяснилось, что время нельзя рассматривать как нечто отдельно взятое. И в любом случае измеренное значение времени зависит от относительного движения наблюдателей. Поэтому два наблюдателя, движущиеся относительно друг друга и следящие за двумя различными событиями, придут к разным выводам о том, насколько эти события разделены в пространстве и во времени. В 1907 г. немецкий математик Герман Минковский (1864-1909) высказал предположение о тесной связи трех пространственных и одной временной характеристик. По его мнению, все события во Вселенной происходят в четырехмерном пространственно-временном континууме.

История планеты Земля уже насчитывает примерно 7 млрд лет. За это время наш общий дом претерпел значительные изменения, что явилось следствием изменения периодов. в хронологическом порядке раскрывают всю историю планеты с самого ее появления до наших дней.

Геологическая хронология

История Земли, представленная в виде эонов, групп, периодов и эпох являет собой определенную сгруппированную хронологию. На первых международных конгрессах геологии была выработана особая хронологическая шкала, которая представляла периодизацию Земли. В последующем эта шкала пополнялась новой информацией и изменялась, в итоге сейчас в ней отражены все геологические периоды в хронологическом порядке.

Самыми крупными подразделениями в этой шкале являются эонотемы, эры и периоды.

Формирование Земли

Геологические периоды Земли в хронологическом порядке начинают свою историю именно с формирования планеты. Ученые пришли к выводу о том, что Земля сформировалась примерно 4,5 млрд лет назад. Сам процесс ее формирования был очень длительным и, возможно, начался еще 7 млрд лет назад из мелких космических частиц. Со временем сила тяготения росла, вместе с ней увеличивалась скорость тел, падавших на формирующуюся планету. Кинетическая энергия трансформировалась в тепло, в результате чего происходило постепенное нагревание Земли.

Ядро Земли, по предположениям ученых, было сформировано за несколько сотен миллионов лет, после чего началось постепенное остывание планеты. В настоящее время в расплавленном ядре содержится 30 % массы Земли. Развитие других оболочек планеты, по мнению ученых, не закончено до сих пор.

Докембрийский эон

В геохронологии Земли первый эон имеет название докембрий. Он охватывает время 4,5 млрд - 600 млн лет назад. То есть львиная доля истории планеты охватывается первым. Однако этот эон делят еще на три - катархей, архей, протерозой. Причем часто первый из них выделяется в самостоятельный эон.

В это время произошло образование суши и воды. Все это происходило во время активной вулканической деятельности на протяжении почти всего эона. Щиты всех континентов были образованы в докембрии, однако следы жизни встречаются очень редко.

Катархейский эон

Начало истории Земли - полмиллиарда лет ее существования в науке названо катархеем. Верхняя граница этого эона находится на отметке 4 млрд лет назад.

Популярная литература рисует нам катархей как время активных вулканических и геотермальных изменений на поверхности Земли. Однако на самом деле это не соответствует действительности.

Катархейский эон - время, когда вулканическая активность не проявлялась, а поверхность Земли представляла собой холодную неприветливую пустыню. Хотя достаточно часто происходили землетрясения, которые сглаживали ландшафт. Поверхность выглядела, как темно-серое первичное вещество, покрытое слоем реголита. Сутки в то время составляли всего 6 часов.

Архейский эон

Второй основной эон из четырех в истории Земли продолжался около 1,5 млрд лет - 4-2,5 млрд лет назад. Тогда Земля еще не имела атмосферы, поэтому и жизни еще не было, однако в этот эон происходит появление бактерий, вследствие отсутствия кислорода они были анаэробными. В результате их деятельности сегодня мы имеем залежи природных ископаемых, таких как железо, графит, сера и никель. История термина «архей» берет свое начало в 1872 году, тогда его предложил знаменитый американский ученый Дж. Дан. Архейский эон, в отличие от предыдущего, характеризуется высокой вулканической активностью и эрозией.

Протерозойский эон

Если рассматривать геологические периоды в хронологическом порядке, следующий миллиард лет занял протерозой. Этот период также характеризуется высокой вулканической активностью и осадкообразованием, также продолжается эрозия на огромных площадях.

Происходит образование т. н. гор В настоящее время они представляют собой небольшие холмы на равнинах. Горные породы этого эона очень богаты слюдой, рудами цветных металлов и железом.

Следует отметить, что в протерозойский период появились первые живые существа - простейшие микроорганизмы, водоросли и грибы. А к концу эона появляются черви, морские беспозвоночные, моллюски.

Фанерозойский эон

Все геологические периоды в хронологическом порядке можно разделить на два типа - явные и скрытые. Фанерозой относится к явным. В это время появляется большое количество живых организмов с минеральными скелетами. Эпоха, предшествующая фанерозою, была названа скрытой потому, что следов ее практически не найдено из-за отсутствия минеральных скелетов.

Последние около 600 млн лет истории нашей планеты называются фанерозойским эоном. Самые значимые события этого эона - кембрийский взрыв, произошедший примерно 540 млн лет назад и пять самых крупных вымираний в истории планеты.

Эры докембрийского эона

Во время катархея и архея не существовало общепризнанных эр и периодов, поэтому их рассмотрение мы пропустим.

Протерозой же состоит из трех больших эр:

Палеопротерозой - т. е. древний, включающий в себя сидерий, риасийский период, орозирий и статерий. К концу этой эры концентрация кислорода в атмосфере достигла современного уровня.

Мезопротерозой - средний. Состоит из трех периодов - калимий, эктазий и стений. В эту эру водоросли и бактерии достигли наибольшего своего расцвета.

Неопротерозой - новый, состоящий из тония, криогения и эдиакария. В это время происходит образование первого суперконтинента - Родиния, однако потом плиты вновь разошлись. Самый холодный ледниковый период проходил в эру под названием мезопротерозой, во время которой замерзла большая часть планеты.

Эры фанерозойского эона

Данный эон состоит из трех больших эпох, резко отличающихся друг от друга:

Палеозой, или эра древней жизни. Началась примерно 600 млн лет назад и закончилась 230 млн лет назад. Палеозой состоит из 7 периодов:

  1. Кембрий (на Земле сформирован умеренный климат, ландшафт низменный, в этот период происходит зарождение всех современных типов животных).
  2. Ордовик (климат на всей планете достаточно теплый, даже в Антарктиде, при этом суша значительно погружается. Происходит появление первых рыб).
  3. Силурийский период (происходит формирование больших внутриконтинентальных морей, при этом низменности становятся все засушливее из-за поднятия суши. Продолжается развитие рыб. Силурийский период отмечен появлением первых насекомых).
  4. Девон (появление первых земноводных и лесов).
  5. Нижний карбон (господство папоротникообразных, распространение акул).
  6. Верхний и средний карбон (появление первых пресмыкающихся).
  7. Пермь (большинство древних животных вымирает).

Мезозой, или время пресмыкающихся. Геологическая история состоит из трех периодов:

  1. Триас (вымирают семенные папоротники, господствуют голосеменные, появляются первые динозавры и млекопитающие).
  2. Юра (часть Европы и западная часть Америки покрыта мелководными морями, появление первых зубатых птиц).
  3. Мел (появление кленовых и дубовых лесов, наивысшее развитие и вымирание динозавров и зубатых птиц).

Кайнозой, или время млекопитающих. Состоит из двух периодов:

  1. Третичный. В начале периода хищники и копытные достигают своего рассвета, климат теплый. Происходит максимальное распространение лесов, древнейшие млекопитающие вымирают. Примерно 25 млн лет назад появляются а в эпоху плиоцена возникает человек.
  2. Четвертичный. Плейстоцен - крупные млекопитающие вымирают, зарождается человеческое общество, происходит 4 ледниковых периода, вымирают многие виды растений. Современная эпоха - заканчивается последний ледниковый период, постепенно климат приобретает нынешний вид. Главенство человека на всей планете.

Геологическая история нашей планеты имеет длительное и противоречивое развитие. В этом процессе было место нескольким вымираниям живых организмов, повторялись ледниковые периоды, наблюдались периоды высокой вулканической активности, были эры главенства разных организмов: от бактерий до человека. История Земли началась примерно 7 млрд лет назад, сформировалась она около 4,5 млрд лет назад и всего меньше миллиона лет назад человек перестал иметь конкурентов во всей живой природе.

Эволюция живых существ может быть понята только в контексте геологического времени.

Геохронологическая (стратиграфическая) шкала времени - это шкала относительного геологического времени, построенная на основе определенных палеонтологией и исторической геологией этапов формирования земной коры и жизни на планете. Она представляет собой последовательность стратиграфических элементов в порядке их образования, в виде полного составного идеального разреза всех земных отложений без пропусков и перекрытий и является эталоном для корреляции любых стратиграфических единиц. Границы между стратиграфическими элементами проводятся по событиям заметных эволюционных или геологических изменений. Учение о хронологической последовательности формирования и возрасте горных пород, слагающих земную кору, называется геохронологией .

Различают относительную и абсолютную геохронологию.

Задачей относительной геохронологии является определение относительного возраста горных пород: определение, какие отложения, встречающиеся в земной коре, являются более древними, а какие более молодые. Есть несколько методов определения относительного возраста пород.

Первый метод - стратиграфический . Он исходит из вполне не ясных и логичных представлений, что каждый пласт осадочных пород образовался раньше того пласта, который его перекрывает.

Второй метод - палеонтологический . Он позволяет установить относительный возраст пород и произвести их сопоставление в геологических разрезах, относящихся к разным районам или регионам. Установление производится по характеру обнаруживаемых в пластах различных органических остатков (окаменелые морские раковины, кости животных, отпечатки листьев и т.д.).

Задачей абсолютной геохронологии является определение истинной продолжительности отдельных периодов и эпох в жизни Земли, а также ее геологического возраста в целом.

Геохронологический возраст горных пород определяется такими единицами измерения, как эра, период, эпоха и век.

Эра - крупнейший этап в истории развития Земли, в котором образовалась группа отложений. Различают пять эр (начиная с более древних): архейская, протерозойская, палеозойская, мезозойская и кайнозойская.

Каждая эра охватывает несколько периодов. Период соответствует времени образования системы горных пород. Периоды подразделяются на несколько эпох, которым соответствуют отделы пород. Эпохи подразделяются на века, которым соответствуют ярусы как совокупность пород, образовавшихся в тот или иной век.

Архейская (эра первичной жизни) и протерозойская (эра древнейшей жизни) эры наиболее удалены от нас по времени (около 1,5 млрд лет). В это время образовались самые древние породы, слагающие жесткий фундамент земной коры. Горные породы архейской эры носят только следы примитивных органических форм, свидетельствуя о зарождении в это время жизни на Земле. Протерозойская эра совпадает по времени с началом развития на Земле разнообразных водорослей, бактерий и беспозвоночных животных.

Палеозойская эра (эра древней жизни) - период времени, удаленный от нас примерно на 600 млн лет и продолжавшийся около 350 млн лет. Эта эра и относящиеся к ней породы изучены более детально. Палеозойская эра характеризуется буйным расцветом органической жизни в морях и океанах и выходом ее на сушу. На суше доминирующее значение приобретают крупные земноводные и в конце эры - первые пресмыкающиеся. В каменноугольном периоде эры пышное развитие получают древовидные папоротники, хвощи и др.

Палеозойская эра подразделяется на шесть периодов (начиная с более древних): кембрийский (Cm), ордовикский (О), силурийский (S), девонский (D), каменноугольный (С) и пермский (Р).

Мезозойская эра (эра средней жизни) продолжительностью 185 млн лет является временем расцвета на суше гигантских пресмыкающихся (гигантских ящеров - динозавров, летающих птеродактилей и др.). Растительный мир и мир насекомых в мезозое имеют некоторые черты, общие с нашим временем. На Земле в это время появляются первые представители млекопитающих и птиц, получивших развитие в следующей, кайнозойской эре.

Мезозойская эра подразделяется на три периода: триасовый (Т), юрский (J) и меловой (Cr).

Кайнозойская эра (эра новой жизни) - наиболее молодая (примерно за 40…50 млн лет до н.э.), сменившая мезозойскую эру. Жизнь в это время приобретает все более близкие к нашему времени формы.

Кайнозойская эра подразделяется на три периода: палеогеновый (Pg), неогеновый (N) и антропогеновый (Аp), или четвертичный (Q). Четвертичный период - последний период развития органического мира, во время которого появился человек.

Горные породы до четвертичного возраста называются коренными , а континентальные четвертичного возраста - покровными . В пределах коренных пород в общем случае более древние породы обладают большей, чем молодые, прочностью, а покровные образования четвертичного времени имеют прочность меньшую, чем коренные. Но прямой связи между возрастом пород и их прочностью не наблюдается, и иногда молодые породы обладают большей прочностью, чем древние.

В результате изучения возраста, состава, условий залегания и распространения горных пород составляются геологические карты, которые показывают выходы коренных пород на поверхность земли. Отложения четвертичного времени на геологических картах, как правило, не показывают; для них составляют специальные карты четвертичных (покровных) отложений. Делают это по той причине, что породы то до четвертичного времени в подавляющем большинстве случаев имеют морское происхождение и отличаются хорошо выявляемой закономерностью строения пластов, как в плане, так и по глубине. Породы же четвертичного возраста, наоборот, в большинстве случаев имеют континентальное происхождение (образованы в пределах суши). Эти породы отличаются крайне непостоянным составом, а границы их распространения обычно определяются существующим рельефом местности.

В наших школах и институтах официально преподают идею о том, что возраст нашей Земли исчисляется многими миллионами лет. Чтобы подтвердить эту точку зрения, как научную, приводится геохронологическая таблица с долгими эрами и периодами, которые ученые якобы вычислили по слоям осадочных пород и их окаменелостям в них. Приведу пример урока:

"Учитель: Многие годы геологи, изучая горные породы, пытались определить возраст Земли. Но ещё недавно они были далеки от успеха. В начале 17 века архиепископ Армы - Джеймс Ашер, вычислил дату сотворения мира по Библии, и определил её как 4004 г. до н. э.

Но он ошибался более чем в миллион раз. Сегодня учёные считают, что возраст Земли – 4600 миллионов лет. Наука, которая занимается изучением возраста Земли по расположению горных пород, называется геологией."

(Геохронологическая таблица фото №1)

(геохронологическая таблица фото №2)

Эти данные ученики принимают на веру, доверяя на слово преподавателю и не проверяя, а насколько правдива эта информация и соответствует ли она действительности. На самом деле уже давно известно множество научных доказательств, которые геохронологическую таблицу показывают недействительной. Есть ученые, которые имеют другую точку зрения на периоды истории нашей Земли. Например, Геологическая модель Уокера, модифицированная Клевбергом:

(Геохронологическая таблица фото №3)

Я думаю, каждый человек, ученик он или учитель, должен основательно перепроверить те официальные данные, которые он получает и сформировать свои собственные убеждения, основанные не на предвзятых догадках, но на научных изысканиях. Чтобы разобраться, какие гипотезы ученых ближе к истине, а какие нет, читайте статьи с другой точкой зрения на геохронологическую таблицу, чем официальная точка зрения, преподаваемая в учебных заведениях.