Частные производные первого и второго порядка. Особенности вычисления частных производных Определение производных высших порядков

Частные производные функции двух переменных.
Понятие и примеры решений

На данном уроке мы продолжим знакомство с функцией двух переменных и рассмотрим, пожалуй, самое распространенное тематическое задание – нахождение частных производных первого и второго порядка, а также полного дифференциала функции . Студенты-заочники, как правило, сталкиваются с частными производными на 1 курсе во 2 семестре. Причем, по моим наблюдениям, задание на нахождение частных производных практически всегда встречается на экзамене.

Для эффективного изучения нижеизложенного материала вам необходимо уметь более или менее уверенно находить «обычные» производные функции одной переменной. Научиться правильно обращаться с производными можно на уроках Как найти производную? и Производная сложной функции . Также нам потребуется таблица производных элементарных функций и правил дифференцирования, удобнее всего, если она будет под рукой в распечатанном виде. Раздобыть справочный материал можно на странице Математические формулы и таблицы .

Быстренько повторим понятие функции двух переменных , я постараюсь ограничиться самым минимумом. Функция двух переменных обычно записывается как , при этом переменные , называются независимыми переменными или аргументами .

Пример: – функция двух переменных.

Иногда используют запись . Также встречаются задания, где вместо буквы используется буква .

С геометрической точки зрения функция двух переменных чаще всего представляет собой поверхность трехмерного пространства (плоскость, цилиндр, шар, параболоид, гиперболоид и т. д.). Но, собственно, это уже больше аналитическая геометрия, а у нас на повестке дня математический анализ, который никогда не давал списывать мой вузовский преподаватель является моим «коньком».

Переходим к вопросу нахождения частных производных первого и второго порядков. Должен сообщить хорошую новость для тех, кто выпил несколько чашек кофе и настроился на невообразимо трудный материал: частные производные – это почти то же самое, что и «обычные» производные функции одной переменной .

Для частных производных справедливы все правила дифференцирования и таблица производных элементарных функций . Есть только пара небольших отличий, с которыми мы познакомимся прямо сейчас:

…да, кстати, для этой темы я таки создал маленькую pdf-книжку , которая позволит «набить руку» буквально за пару часов. Но, пользуясь сайтом, вы, безусловно, тоже получите результат – только может чуть медленнее:

Пример 1

Найти частные производные первого и второго порядка функции

Сначала найдем частные производные первого порядка. Их две.

Обозначения :
или – частная производная по «икс»
или – частная производная по «игрек»

Начнем с . Когда мы находим частную производную по «икс», то переменная считается константой (постоянным числом) .

Комментарии к выполненным действиям:

(1) Первое, что мы делаем при нахождении частной производной – заключаем всю функцию в скобки под штрих с подстрочным индексом .

Внимание, важно! Подстрочные индексы НЕ ТЕРЯЕМ по ходу решения. В данном случае, если вы где-нибудь нарисуете «штрих» без , то преподаватель, как минимум, может поставить рядом с заданием (сразу откусить часть балла за невнимательность).

(2) Используем правила дифференцирования , . Для простого примера, как этот, оба правила вполне можно применить на одном шаге. Обратите внимание на первое слагаемое: так как считается константой, а любую константу можно вынести за знак производной , то мы выносим за скобки. То есть в данной ситуации ничем не лучше обычного числа. Теперь посмотрим на третье слагаемое : здесь, наоборот, выносить нечего. Так как константа, то – тоже константа, и в этом смысле она ничем не лучше последнего слагаемого – «семерки».

(3) Используем табличные производные и .

(4) Упрощаем, или, как я люблю говорить, «причесываем» ответ.

Теперь . Когда мы находим частную производную по «игрек», то переменная считается константой (постоянным числом) .

(1) Используем те же правила дифференцирования , . В первом слагаемом выносим константу за знак производной, во втором слагаемом ничего вынести нельзя поскольку – уже константа.

(2) Используем таблицу производных элементарных функций. Мысленно поменяем в таблице все «иксы» на «игреки». То есть данная таблица рАвно справедлива и для (да и вообще почти для любой буквы) . В частности, используемые нами формулы выглядят так: и .

В чём смысл частных производных?

По своей сути частные производные 1-го порядка напоминают «обычную» производную :

– это функции , которые характеризуют скорость изменения функции в направлении осей и соответственно. Так, например, функция характеризует крутизну «подъёмов» и «склонов» поверхности в направлении оси абсцисс, а функция сообщает нам о «рельефе» этой же поверхности в направлении оси ординат.

! Примечание : здесь подразумеваются направления, которые параллельны координатным осям .

В целях лучшего понимания рассмотрим конкретную точку плоскости и вычислим в ней значение функции («высоту»):
– а теперь представьте, что вы здесь находитесь (НА САМОЙ поверхности).

Вычислим частную производную по «икс» в данной точке:

Отрицательный знак «иксовой» производной сообщает нам об убывании функции в точке по направлению оси абсцисс. Иными словами, если мы сделаем маленький-маленький (бесконечно малый) шажок в сторону острия оси (параллельно данной оси) , то спустимся вниз по склону поверхности.

Теперь узнаем характер «местности» по направлению оси ординат:

Производная по «игрек» положительна, следовательно, в точке по направлению оси функция возрастает . Если совсем просто, то здесь нас поджидает подъём в гору.

Кроме того, частная производная в точке характеризует скорость изменения функции по соответствующему направлению. Чем полученное значение больше по модулю – тем поверхность круче, и наоборот, чем оно ближе к нулю – тем поверхность более пологая. Так, в нашем примере «склон» по направлению оси абсцисс более крут, чем «гора» в направлении оси ординат.

Но то были два частных пути. Совершенно понятно, что из точки, в которой мы находимся, (и вообще из любой точки данной поверхности) мы можем сдвинуться и в каком-нибудь другом направлении. Таким образом, возникает интерес составить общую «навигационную карту», которая сообщала бы нам о «ландшафте» поверхности по возможности в каждой точке области определения данной функции по всем доступным путям. Об этом и других интересных вещах я расскажу на одном из следующих уроков, ну а пока что вернёмся к технической стороне вопроса.

Систематизируем элементарные прикладные правила:

1) Когда мы дифференцируем по , то переменная считается константой.

2) Когда же дифференцирование осуществляется по , то константой считается .

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (, либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения :
или – вторая производная по «икс»
или – вторая производная по «игрек»
или – смешанная производная «икс по игрек»
или – смешанная производная «игрек по икс»

Со второй производной нет никаких проблем. Говоря простым языком, вторая производная – это производная от первой производной .

Для удобства я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек».

Аналогично:

В практических примерах можно ориентироваться на следующее равенство :

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».
Никаких изобретений, берем и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении , нужно проявить повышенное внимание , так как никаких чудесных равенств для их проверки не существует.

Вторые производные также находят широкое практическое применение, в частности, они используются в задаче отыскания экстремумов функции двух переменных . Но всему своё время:

Пример 2

Вычислить частные производные первого порядка функции в точке . Найти производные второго порядка.

Это пример для самостоятельного решения (ответы в конце урока). Если возникли трудности с дифференцированием корней, вернитесь к уроку Как найти производную? А вообще, довольно скоро вы научитесь находить подобные производные «с лёту».

Набиваем руку на более сложных примерах:

Пример 3

Проверить, что . Записать полный дифференциал первого порядка .

Решение: Находим частные производные первого порядка:

Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.

Дальнейшие комментарии:

(1) Выносим все константы за знак производной. В данном случае и , а, значит, и их произведение считается постоянным числом.

(2) Не забываем, как правильно дифференцировать корни.

(1) Выносим все константы за знак производной, в данной случае константой является .

(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .

(3) Не забываем, что – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .

Теперь находим смешанные производные второго порядка:

Значит, все вычисления выполнены верно.

Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.

Полный дифференциал первого порядка функции двух переменных имеет вид:

В данном случае:

То есть, в формулу нужно тупо просто подставить уже найденные частные производные первого порядка. Значки дифференциалов и в этой и похожих ситуациях по возможности лучше записывать в числителях:

И по неоднократным просьбам читателей, полный дифференциал второго порядка .

Он выглядит так:

ВНИМАТЕЛЬНО найдём «однобуквенные» производные 2-го порядка:

и запишем «монстра», аккуратно «прикрепив» квадраты , произведение и не забыв удвоить смешанную производную:

Ничего страшного, если что-то показалось трудным, к производным всегда можно вернуться позже, после того, как поднимите технику дифференцирования:

Пример 4

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Рассмотрим серию примеров со сложными функциями:

Пример 5

Найти частные производные первого порядка функции .

Решение:

Пример 6

Найти частные производные первого порядка функции .
Записать полный дифференциал .

Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое

Довольно часто все вышерассмотренные правила применяются в комбинации.

Пример 7

Найти частные производные первого порядка функции .

(1) Используем правило дифференцирования суммы

(2) Первое слагаемое в данном случае считается константой, поскольку в выражении нет ничего, зависящего от «икс» – только «игреки». Знаете, всегда приятно, когда дробь удается превратить в ноль). Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в этом смысле ничего бы не изменилось, если бы вместо была дана функция – важно, что здесь произведение двух функций, КАЖДАЯ из которых зависит от «икс» , а поэтому, нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.

(1) В первом слагаемом и в числителе и в знаменателе содержится «игрек», следовательно, нужно использовать правило дифференцирования частного: . Второе слагаемое зависит ТОЛЬКО от «икс», значит, считается константой и превращается в ноль. Для третьего слагаемого используем правило дифференцирования сложной функции.

Для тех читателей, которые мужественно добрались почти до конца урока, расскажу старый мехматовский анекдот для разрядки:

Однажды в пространстве функций появилась злобная производная и как пошла всех дифференцировать. Все функции разбегаются кто куда, никому не хочется превращаться! И только одна функция никуда не убегает. Подходит к ней производная и спрашивает:

– А почему это ты от меня никуда не убегаешь?

– Ха. А мне всё равно, ведь я «е в степени икс», и ты со мной ничего не сделаешь!

На что злобная производная с коварной улыбкой отвечает:

– Вот здесь ты ошибаешься, я тебя продифференцирую по «игрек», так что быть тебе нулем.

Кто понял анекдот, тот освоил производные, минимум, на «тройку»).

Пример 8

Найти частные производные первого порядка функции .

Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.

Ну вот почти и всё. Напоследок не могу не обрадовать любителей математики еще одним примером. Дело даже не в любителях, у всех разный уровень математической подготовки – встречаются люди (и не так уж редко), которые любят потягаться с заданиями посложнее. Хотя, последний на данном уроке пример не столько сложный, сколько громоздкий с точки зрения вычислений.

Пусть задана функция двух переменных. Дадим аргументу приращение, а аргумент оставим неизменным. Тогда функция получит приращение, которое называется частным приращением по переменной и обозначается:

Аналогично, фиксируя аргумент и придавая аргументу прираще-ние, получим частное приращение функции по переменной:

Величина называется полным прира-щениием функции в точке.

Определение 4. Частной производной функции двух переменных по одной из этих переменных называется предел отношения соответствующего частного приращения функции к приращению данной переменной, когда последнее стремится к нулю (если этот предел существует). Обозначается частная производная так: или, или.

Таким образом, по определению имеем:

Частные производные функции вычисляются по тем же правилам и формулам, что и функция одной переменной, при этом учитывается, что при дифференцировании по переменной, считается постоянной, а при дифференцировании по переменной постоянной считается.

Пример 3. Найти частные производные функций:

Решение. а) Чтобы найти считаем постоянной величиной и дифференцируем как функцию одной переменной:

Аналогично, считая постоянной величиной, находим:

Определение 5. Полным дифференциалом функции называется сумма произведений частных производных этой функции на приращения соответствующих независимых переменных, т.е.

Учитывая, что дифференциалы независимых переменных совпадают с их приращениями, т.е. , формулу полного дифференциала можно записать в виде

Пример 4. Найти полный дифференциал функции.

Решение. Так как, то по формуле полного дифференциала находим

Частные производные высших порядков

Частные производные и называют частными производными первого порядка или первыми частными производными.

Определение 6. Частными производными второго порядка функции называются частные производные от частных производных первого порядка.

Частных производных второго порядка четыре. Они обозначаются следующим образом:

Аналогично определяются частные производные 3-го, 4-го и более высоких порядков. Например, для функции имеем:

Частные производные второго или более высокого порядка, взятые по различным переменным, называются смешанными частными производными. Для функции таковыми являются производные. Заметим, что в случае, когда смешанные производные непрерывны, то имеет место равенство.

Пример 5. Найти частные производные второго порядка функции

Решение. Частные производные первого порядка для данной функции найдены в примере 3:

Дифференцируя и по переменным х и y, получим

Подведем итог, чем же отличается нахождение частных производных от нахождения «обычных» производных функции одной переменной:

1) Когда мы находим частную производную , то переменнаясчитается константой.

2) Когда мы находим частную производную , то переменнаясчитается константой.

3) Правила и таблица производных элементарных функций справедливы и применимы для любой переменной (, либо какой-нибудь другой), по которой ведется дифференцирование.

Шаг второй. Находим частные производные второго порядка. Их четыре.

Обозначения:

Или – вторая производная по «икс»

Или – вторая производная по «игрек»

Или – смешанная производная «по икс игрек»

Или – смешанная производная «по игрек икс»

В понятии второй производной нет ничего сложного. Говоря простым языком, вторая производная – это производная от первой производной.

Для наглядности я перепишу уже найденные частные производные первого порядка:

Сначала найдем смешанные производные:

Как видите, всё просто: берем частную производную и дифференцируем ее еще раз, но в данном случае – уже по «игрек».

Аналогично:

Для практических примеров, когда все частные производные непрерывны, справедливо следующее равенство:

Таким образом, через смешанные производные второго порядка очень удобно проверить, а правильно ли мы нашли частные производные первого порядка.

Находим вторую производную по «икс».

Никаких изобретений, берем и дифференцируем её по «икс» еще раз:

Аналогично:

Следует отметить, что при нахождении , нужно проявить повышенное внимание , так как никаких чудесных равенств для проверки не существует.

Пример 2

Найти частные производные первого и второго порядка функции

Это пример для самостоятельного решения (ответ в конце урока).

При определенном опыте частные производные из примеров №№1,2 будут решаться Вами устно.

Переходим к более сложным примерам.

Пример 3

Проверить, что . Записать полный дифференциал первого порядка .

Решение: Находим частные производные первого порядка:

Обратите внимание на подстрочный индекс: , рядом с «иксом» не возбраняется в скобках записывать, что – константа. Данная пометка может быть очень полезна для начинающих, чтобы легче было ориентироваться в решении.

Дальнейшие комментарии:

(1) Выносим все константы за знак производной. В данном случае и , а, значит, и их произведение считается постоянным числом.

(2) Не забываем, как правильно дифференцировать корни.

(1) Выносим все константы за знак производной, в данной случае константой является .

(2) Под штрихом у нас осталось произведение двух функций, следовательно, нужно использовать правило дифференцирования произведения .

(3) Не забываем, что – это сложная функция (хотя и простейшая из сложных). Используем соответствующее правило: .

Теперь находим смешанные производные второго порядка:

Значит, все вычисления выполнены верно.

Запишем полный дифференциал . В контексте рассматриваемого задания не имеет смысла рассказывать, что такое полный дифференциал функции двух переменных. Важно, что этот самый дифференциал очень часто требуется записать в практических задачах.

Полный дифференциал первого порядка функции двух переменных имеет вид:

.

В данном случае:

То есть, в формулу нужно просто подставить уже найденные частные производные первого порядка. Значки дифференциалов и в этой и похожих ситуациях по возможности лучше записывать в числителях:

Пример 4

Найти частные производные первого порядка функции . Проверить, что . Записать полный дифференциал первого порядка .

Это пример для самостоятельного решения. Полное решение и образец оформления задачи – в конце урока.

Рассмотрим серию примеров, включающих в себя сложные функции.

Пример 5

(1) Применяем правило дифференцирования сложной функции . С урока Производная сложной функции следует помнить очень важный момент: когда мы по таблице превращаем синус (внешнюю функцию) в косинус, то вложение (внутренняя функция) у нас не меняется .

(2) Здесь используем свойство корней: , выносим константу за знак производной, а корень представляем в нужном для дифференцирования виде.

Аналогично:

Запишем полный дифференциал первого порядка:

Пример 6

Найти частные производные первого порядка функции .

Записать полный дифференциал .

Это пример для самостоятельного решения (ответ в конце урока). Полное решение не привожу, так как оно достаточно простое

Довольно часто все вышерассмотренные правила применяются в комбинации.

Пример 7

Найти частные производные первого порядка функции .

(1) Используем правило дифференцирования суммы.

(2) Первое слагаемое в данном случае считается константой, поскольку в выражении нет ничего, зависящего от «икс» – только «игреки».

(Знаете, всегда приятно, когда дробь удается превратить в ноль).

Для второго слагаемого применяем правило дифференцирования произведения. Кстати, в алгоритме ничего бы не изменилось, если бы вместо была дана функция – важно, что здесь мы имеем произведение двух функций, КАЖДАЯ из которых зависит от «икс» , поэтому нужно использовать правило дифференцирования произведения. Для третьего слагаемого применяем правило дифференцирования сложной функции.

Пусть задана функция . Так как x и y – независимые переменные, то одна из них может изменяться, а другая сохранять свое значение. Дадим независимой переменной x приращение , сохраняя значение y неизменным. Тогда z получит приращение, которое называется частным приращением z по x и обозначается . Итак, .

Аналогично получаем частное приращение z по y: .

Полное приращение функции z определяется равенством .

Если существует предел , то он называется частной производной функции в точке по переменной x и обозначается одним из символов:

.

Частные производные по x в точке обычно обозначают символами .

Аналогично определяется и обозначается частная производная от по переменной y:

Таким образом, частная производная функции нескольких (двух, трех и больше) переменных определяется как производная функции одной из этих переменных при условии постоянства значений остальных независимых переменных. Поэтому частные производные функции находится по формулам и правилам вычисления производных функции одной переменной (при этом соответственно x или y считаются постоянной величиной).

Частные производные и называют частными производными первого порядка. Их можно рассматривать как функции от . Эти функции могут иметь частные производные, которые называются частными производными второго порядка. Они определяются и обозначаются следующим образом:

; ;

; .


Дифференциалы 1 и 2 порядка функции двух переменных.

Полный дифференциал функции (формула 2.5) называют дифференциалом первого порядка.

Формула для вычисления полного дифференциала имеет следующий вид:

(2.5) или , где ,

частные дифференциалы функции .

Пусть функция имеет непрерывные частные производные второго порядка. Дифференциал второго порядка определяется по формуле . Найдем его:


Отсюда: . Символически это записывается так:

.


НЕОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ.

Первообразная функции, неопределенный интеграл, свойства.

Функция F(x) называется первообразной для данной функ­ции f{x), если F"(x)=f(x), или, что то же, если dF(x)=f(x)dx.

Теорема. Если функция f(x), определенная в некотором промежутке (X) конечной или бесконечной длины, имеет одну первообразную, F(x), то она имеет и бесконечно много первообразных; все они содержатся в выра­жении F(x)+С, где С - произвольная постоянная.

Совокупность всех первообразных для данной функции f(x), определенной в некотором промежутке или на некотором отрезке конечной или бесконечной длины, называется неопределенным интегралом от функ­ции f(x) [или от выражения f(x)dx ] и обозначается символом .



Если F(x) есть одна из первообразных для f(x), то согласно теореме о первообразных

, где С есть произвольная постоянная.

По определению первообразной F"(x)=f(x) и, следовательно, dF(x)=f(x) dx. В формуле (7.1), f(x) называется подинтегральной функцией, а f(x) dx - подинтегральным выражением.

Частные производные применяются в заданиях с функциями нескольких переменных. Правила нахождения точно такие же как и для функций одной переменной, с разницей лишь в том, что одну из переменных нужно считать в момент дифференцирования константой (постоянным числом).

Формула

Частные производные для функции двух переменных $ z(x,y) $ записываются в следующем виде $ z"_x, z"_y $ и находятся по формулам:

Частные производные первого порядка

$$ z"_x = \frac{\partial z}{\partial x} $$

$$ z"_y = \frac{\partial z}{\partial y} $$

Частные производные второго порядка

$$ z""_{xx} = \frac{\partial^2 z}{\partial x \partial x} $$

$$ z""_{yy} = \frac{\partial^2 z}{\partial y \partial y} $$

Смешанная производная

$$ z""_{xy} = \frac{\partial^2 z}{\partial x \partial y} $$

$$ z""_{yx} = \frac{\partial^2 z}{\partial y \partial x} $$

Частная производная сложной функции

а) Пусть $ z (t) = f(x(t), y(t)) $, тогда производная сложной функции определяется по формуле:

$$ \frac{dz}{dt} = \frac{\partial z}{\partial x} \cdot \frac{dx}{dt} + \frac{\partial z}{\partial y} \cdot \frac{dy}{dt} $$

б) Пусть $ z (u,v) = z(x(u,v),y(u,v)) $, тогда частные производные функции находится по формуле:

$$ \frac{\partial z}{\partial u} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial u} $$

$$ \frac{\partial z}{\partial v} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} $$

Частные производные неявно заданной функции

а) Пусть $ F(x,y(x)) = 0 $, тогда $$ \frac{dy}{dx} = -\frac{f"_x}{f"_y} $$

б) Пусть $ F(x,y,z)=0 $, тогда $$ z"_x = - \frac{F"_x}{F"_z}; z"_y = - \frac{F"_y}{F"_z} $$

Примеры решений

Пример 1
Найти частные производные первого порядка $ z (x,y) = x^2 - y^2 + 4xy + 10 $
Решение

Для нахождения частной производной по $ x $ будем считать $ y $ постоянной величиной (числом):

$$ z"_x = (x^2-y^2+4xy+10)"_x = 2x - 0 + 4y + 0 = 2x+4y $$

Для нахождения частной производной функции по $ y $ определим $ y $ константой:

$$ z"_y = (x^2-y^2+4xy+10)"_y = -2y+4x $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ z"_x = 2x+4y; z"_y = -2y+4x $$
Пример 2
Найти частные производные функции второго порядка $ z = e^{xy} $
Решение

Сперва нужно найти первый производные, а затем зная их можно найти производные второго порядка.

Полагаем $ y $ константой:

$$ z"_x = (e^{xy})"_x = e^{xy} \cdot (xy)"_x = ye^{xy} $$

Положим теперь $ x $ постоянной величиной:

$$ z"_y = (e^{xy})"_y = e^{xy} \cdot (xy)"_y = xe^{xy} $$

Зная первые производные аналогично находим вторые.

Устанавливаем $ y $ постоянной:

$$ z""_{xx} = (z"_x)"_x = (ye^{xy})"_x = (y)"_x e^{xy} + y(e^{xy})"_x = 0 + ye^{xy}\cdot (xy)"_x = y^2e^{xy} $$

Задаем $ x $ постоянной:

$$ z""_{yy} = (z"_y)"_y = (xe^{xy})"_y = (x)"_y e^{xy} + x(e^{xy})"_y = 0 + x^2e^{xy} = x^2e^{xy} $$

Теперь осталось найти смешанную производную. Можно продифференцировать $ z"_x $ по $ y $, а можно $ z"_y $ по $ x $, так как по теореме $ z""_{xy} = z""_{yx} $

$$ z""_{xy} = (z"_x)"_y = (ye^{xy})"_y = (y)"_y e^{xy} + y (e^{xy})"_y = ye^{xy}\cdot (xy)"_y = yxe^{xy} $$

Ответ
$$ z"_x = ye^{xy}; z"_y = xe^{xy}; z""_{xy} = yxe^{xy} $$
Пример 4
Пусть $ 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ задаёт неявную функцию $ F(x,y,z) = 0 $. Найти частные производные первого порядка.
Решение

Записываем функцию в формате: $ F(x,y,z) = 3x^3z - 2z^2 + 3yz^2-4x+z-5 = 0 $ и находим производные:

$$ z"_x (y,z - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_x = 3 x^2 z - 4 $$

$$ z"_y (x,y - const) = (x^3 z - 2z^2 + 3yz^2-4x+z-5)"_y = 3z^2 $$

Ответ
$$ z"_x = 3x^2 z - 4; z"_y = 3z^2; $$