Распады нейтрона указали на существование темной материи. Нейтронный распад Какое взаимодействие обеспечивает распад нейтрона

. Время жизни свободного нейтрона составляет 880,1 ± 1,1 секунды (что соответствует периоду полураспада 611 ± 0,8 с ). Прецизионные измерения параметров бета-распада нейтрона (время жизни, угловые корреляции между импульсами частиц и спином нейтрона) имеют важное значение для определения свойств слабого взаимодействия .

Бета-распад нейтрона был предсказан Фредериком Жолио-Кюри в и открыт в - независимо А. Снеллом, Дж. Робсоном и П. Е. Спиваком.

Редкие каналы распада

Кроме распада нейтрона с образованием протона, электрона и электронного антинейтрино, должен происходить также более редкий процесс с излучением дополнительного гамма-кванта - радиативный (то есть сопровождающийся электромагнитным излучением) бета-распад нейтрона:

0 1 n → 1 1 p + e − + ν ¯ e + γ . {\displaystyle {}_{0}^{1}n\to {}_{1}^{1}p+e^{-}+{\bar {\nu }}_{e}+\gamma .}

Теория предсказывает, что спектр гамма-квантов, излучающихся при радиативном распаде нейтрона, должен лежать в диапазоне от 0 до 782 кэВ и зависеть от энергии (в первом приближении) как E −1 . С физической точки зрения, этот процесс представляет собой тормозное излучение образующегося электрона (и в меньшей степени - протона) .

В 2005 году этот ранее предсказанный процесс был обнаружен экспериментально . Измерения в этой работе показали, что радиативный канал распада реализуется с вероятностью 0,32 ± 0,16 % при энергии гамма-кванта E γ > 35 кэВ . Этот результат впоследствии был подтверждён и значительно уточнён рядом других экспериментальных групп; в частности, коллаборация RDK II установила , что вероятность распада с вылетом гамма-кванта составляет (0,335 ± 0,005 stat ± 0,015 syst) % при E γ > 14 кэВ и (0,582 ± 0,023 stat ± 0,062 syst) % при 0,4 кэВ < E γ < 14 кэВ . Это совпадает в пределах ошибок с теоретическими предсказаниями (соответственно 0,308 % и 0,515 %).

Должен существовать также канал распада свободного нейтрона в связанное состояние - атом водорода (1 1 p + e − = 1 H) : {\displaystyle ({}_{1}^{1}p+e^{-}={}^{1}\mathrm {H}):}

0 1 n → 1 H + ν ¯ e . {\displaystyle {}_{0}^{1}n\to {}^{1}\mathrm {H} +{\bar {\nu }}_{e}.}

Однако из экспериментов известно лишь, что вероятность такого распада меньше 3 % (парциальное время жизни по этому каналу превышает 3⋅10 4 с ) . Теоретически ожидаемая вероятность распада в связанное состояние по отношению к полной вероятности распада равна 3,92⋅10 −6 . Связанный электрон для выполнения закона сохранения углового момента должен возникать в S -состоянии (с нулевым орбитальным моментом), в том числе с вероятностью ≈84 % - в основном состоянии, и 16 % - в одном из возбуждённых S -состояний атома водорода . При распаде в атом водорода почти вся энергия распада, 782,33305 кэВ (за исключением очень малой кинетической энергии атома отдачи) уносится электронным антинейтрино.

См. также

Примечания

  1. J. Beringer et al. (Particle Data Group), Phys. Rev. D86, 010001 (2012) http://pdg.lbl.gov/2012/tables/rpp2012-sum-baryons.pdf
  2. Bales M. J. et al. (RDK II Collaboration). Precision Measurement of the Radiative β Decay of the Free Neutron (англ.) // Physical Review Letters . - 2016. - 14 June (vol. 116 , no. 24 ). - P. 242501 . - ISSN 0031-9007 . - DOI :10.1103/PhysRevLett.116.242501 . - arXiv :1603.00243 . [исправить]
  3. Khafizov R. U., Severijns N., Zimmer O., Wirth H.-F., Rich D., Tolokonnikov S. V., Solovei V. A., Kolhidashvili M. R. Observation of the neutron radioactive decay // Journal of Experimental and Theoretical Physics Letters . - 2006. - Vol. 83. - P. 366. - ISSN 0021-3640 . - DOI :10.1134/S0021364006080145 . - arXiv :nucl-ex/0512001 . [исправить]
  4. Green K., Thompson D. The decay of the neutron to a hydrogen atom // Journal of Physics G: Nuclear and Particle Physics. - 1990. - Т. 16 , вып. 4 . - С. L75-L76 . - DOI :10.1088/0954-3899/16/4/001 .
  5. Faber M. , Ivanov A. N. , Ivanova V. A. , Marton J. , Pitschmann M. , Serebrov A. P. , Troitskaya N. I. , Wellenzohn M. Continuum-state and bound-state β − -decay rates of the neutron (англ.) // Physical Review C. - 2009. - 9 September (vol. 80 , no. 3 ). - P. 035503 . - ISSN 0556-2813 . - DOI :10.1103/PhysRevC.80.035503 . - arXiv :0906.0959 . [исправить]
  6. Dubbers D., Schmidt M. G. The neutron and its role in cosmology and particle physics (англ.) // Reviews of Modern Physics. - 2011. - Vol. 83 . - P. 1111-1171 . -

Распад нейтрона

Протон-нейтронная модель ядра вполне удовлетворяет физиков и по сей день считается лучшей. Тем не менее, на первый взгляд она вызывает некоторые сомнения. Если атомное ядро состоит только из протонов и нейтронов, снова возникает вопрос о том, как могут вылететь из него отрицательно заряженные электроны в виде?-частиц. А что если электронов в ядре нет и они образуются в момент распада? Применим законы сохранения в поисках правильного решения.

Образование электрона означает возникновение отрицательного электрического заряда. Но по закону сохранения электрического заряда отрицательный заряд не может образоваться, пока одновременно не возникнет положительный. Однако ни одна положительно заряженная частица не вылетает из ядра вместе с?-частицей следовательно, такая частица должна остаться внутри ядра. Известно, что внутри ядра существует одна-единственная положительно заряженная частица - протон. Из всего сказанного следует, что, когда из ядра вылетает электрон, внутри ядра образуется протон. Перейдем к закону сохранения энергии. Протон обладает массой, и если он образуется, где-то в другом месте должна исчезнуть масса. Во всех ядрах, кроме водорода-1 присутствуют нейтроны. Будучи незаряженным, нейтрон появляется или исчезает, не нарушая закон сохранения электрического заряда. Следовательно, при излучении?-частицы внутри ядра исчезает нейтрон и одновременно возникает протон (рис. 4). Другими словами, нейтрон превращается в протон, испуская при этом электрон. Нарушение закона сохранения энергии не наблюдается, так как нейтрон чуть-чуть тяжелее протона. Протон и электрон вместе имеют массу 1,008374 по шкале атомных весов, а масса нейтрона равна 1,008665. При превращении нейтрона в электрон и протон масса 0,00029 «исчезает». В действительности она превращается в кинетическую энергию вылетающей?-частицы, равную примерно 320 кэв.

Рис. 4. Излучение?-частицы.

Такое объяснение кажется удовлетворительным, поэтому подведем итог, используя по возможности простую систему символов. Обозначим нейтрон n, протон p + , электрон е - и запишем уравнение излучения?-частицы:

n ? р + + е - .

Наши рассуждения только косвенно отражают то, что происходит внутри ядра. В действительности нельзя заглянуть внутрь ядра и увидеть, как протон превращается в нейтрон, когда вылетает заряженный электрон. По крайней мере, до сих пор нельзя. А можно ли наблюдать отдельные нейтроны в свободном состоянии? Будут ли они, так сказать, на наших глазах превращаться в протоны и испускать быстрые электроны?

В 1950 году физикам удалось, наконец, получить ответ. Свободные нейтроны время от времени распадаются и превращаются в протоны, причем происходит это не часто. Каждый раз, когда нейтрон претерпевает такое изменение, излучается электрон.

Нейтроны существуют в свободном состоянии до тех пор, пока не произойдет распад, и вопрос о том, как долго длится этот период, очень важен. Когда конкретно нейтрон претерпит радиоактивный распад, - сказать невозможно. Процесс этот носит случайный характер. Один нейтрон существует, не распадаясь, одну миллионную долю секунды, другой - пять недель, третий - двадцать семь миллиардов лет. Тем не менее, для большого количества частиц одного типа с достаточной степенью точности можно предсказать, когда распадется определенный процент их. (Аналогичным образом страховой статистик не может предсказать, как долго будет жить отдельный человек, но для большой группы людей определенного возраста, профессии, места жительства т. д. со значительной точностью он может предсказать, через сколько времени половина из них умрет.)

Время, в течение которого распадается половина частиц данного типа, называют обычно периодом полураспада частицы. Этот термин был введен Резерфордом в 1904 году. Каждый вид частиц имеет свой собственный характерный период полураспада. Например, период полураспада урана-238 4,5·10 9 лет, тория-232 гораздо больше - 1,4·10 10 лет. Поэтому уран и торий до сих пор встречаются в значительных количествах в земной коре, несмотря на то что в каждый момент некоторые из их атомов распадаются. В течение всей пятимиллиардной истории Земли распалась только половина запасов урана-238 и гораздо меньше половины запасов тория-232.

Некоторые радиоактивные ядра гораздо менее стабильны. Например, когда уран-238 излучает?-частицу, он превращается в торий-234. Период полураспада тория-234 только 24 дня, поэтому в земной коре имеются лишь следы этого элемента. Он очень медленно образуется из урана-238 и, образовавшись, очень быстро распадается.

Распадаясь, торий-234 излучает?-частицу. Внутри ядра тория нейтрон превращается в протон. Это превращение тория-234 происходит с такой скоростью, что период полураспада равен двадцати четырем дням, В других радиоактивных изотопах нейтроны гораздо медленнее превращаются в протоны. Например, калий-40 излучает?-частицы с периодом полураспада 1,3·10 9 лет. Некоторые изотопы вовсе не подвержены радиоактивному распаду. Так, в ядрах атомов кислорода-16, насколько известно, ни один нейтрон сам по себе не превращается в протон, т. е. период полураспада бесконечен. Однако нас больше всего интересует период полураспада свободного нейтрона. Свободный нейтрон не окружен другими частицами, которые делали бы его более или менее стабильным, удлиняя или укорачивая его период полураспада, т. е. в случае свободного нейтрона мы имеем, так сказать, неискаженный период полураспада. Оказывается, он равен примерно двенадцати минутам, следовательно, половина из триллиона нейтронов превращается в протоны и электроны в конце каждой двенадцатой минуты.

Из книги Физики продолжают шутить автора Конобеев Юрий

Послеобеденные замечания о природе нейтрона Ж. Вервье Речь при закрытии Антверпенской конференции 1965 г. В ходе настоящей конференции мы слышали много интересных суждений об объекте, называемом «Нейтрон», от различных ученых из самых разных стран. Мы должны, однако,

Из книги Курс истории физики автора Степанович Кудрявцев Павел

Из книги автора

История открытия нейтрона История открытия нейтрона начинается с безуспешных попыток Чедвика обнаружить нейтроны при электрических разрядах в водороде (на основе вышеупомянутой гипотезы Резерфор-да). Резерфорд, как мы знаем, осуществил первую искусственную ядерную

А.А.Гришаев, независимый исследователь

Введение.

Проблема массы нейтрона – это вопиющая проблема в физике. Распад нейтрона свидетельствует о том, что строение нейтрона обеспечивается не с помощью дефекта масс. Действительно, продуктами распада нейтрона являются протон и электрон (и, как полагают, ещё антинейтрино, масса которого пренебрежимо мала). Масса же свободного нейтрона, как полагают, больше массы свободного протона на 2.5 массы электрона . Выходит, что масса нейтрона на полторы массы электрона больше суммы масс стабильных продуктов своего распада. Тогда, по традиционной логике, нейтрон должен быть весьма нестабильным объектом. И если, для объяснения продолжительного существования нейтронов в атомных ядрах, можно допустить действие какого-нибудь стабилизирующего механизма, то свободный нейтрон обязан распадаться за время, сравнимое с характерными ядерными временами – т.е., по практическим меркам, мгновенно. Между тем, измерения среднего времени жизни нейтронов, вылетающих из атомных котлов, дают величину около 12 мин (см., например, ).

Нелепость данной ситуации может быть устранена лишь достаточно радикальным образом: например, мы обнаружим, что масса нейтрона была определена некорректно – или осознаем, как структура из пары элементарных частиц может удерживаться благодаря не дефекту масс, а, наоборот, приросту. В данной статье мы излагаем представления, в которых реализовались обе названные возможности. Согласно этим представлениям, масса нейтрона превышает сумму масс протона и электрона на половину массы электрона, т.е. масса нейтрона на одну массу электрона меньше принятого значения. При этом компоненты, связанные в нейтроне, удерживаются благодаря описываемому ниже механизму, следствием работы которого является именно прирост масс, равный половине массы электрона.

Предлагаемый подход не только устраняет проблему «масса-стабильность нейтрона», но и проясняет, в частности, происхождение антипротонов, а также открывает перспективы для построения простой универсальной модели ядерных сил.

Ненадёжность принятого значения массы нейтрона.

Фундаментальным методом нахождения масс микрочастиц является измерение их удельного заряда, т.е. отношения заряда к массе, с помощью масс-спектрометров (см., например, ). Масса нейтральной частицы не может быть найдена таким способом.

Открыватель нейтрона Чедвик устранил проблемы с законами сохранения энергии-импульса для случая проникающего излучения, возникающего при бомбардировке бериллия a -частицами – допустив, что это излучение является не высокоэнергичными g -квантами, как полагали ранее, а потоком нейтральных частиц с массами, близкими к массе протона (см., например, ). Это допущение Чедвик подкрепил расчётом, основанном на сопоставлении максимальных скоростей отдачи, сообщаемых атомам водорода и азота нейтронами при лобовом столкновении. Этот расчёт дал для нейтрона массу 1.15 (значения масс мы приводим в единицах использовавшейся до 1961 г. кислородной шкалы – по отношению к О 16). Значительное превышение этой величиной массы протона, 1.00768 (при массе электрона в 0.00055), было связано, как полагают, со значительными, 10-процентными, погрешностями измерения скоростей отдачи; этот первый результат Чедвика говорил лишь о том, что массы нейтрона и протона близки друг к другу .

Более точные вычисления массы нейтрона выполнялись через энергиетические балансы ядерных реакций. Так, Чедвик проанализировал реакцию испускания нейтронов бором при его бомбардировке a -частицами:

B 11 + He 4 ® N 14 + n 1 .

При этом в энергетический баланс были включены массы всех четырёх участников, а также кинетические энергии a -частицы, атома азота и нейтрона – результирующая масса нейтрона составила 1.0067 , что меньше (!) массы протона. Ещё меньшее значение, 1.0063, получили авторы , на основе анализа реакции распада на a -частицы ядер лития при бомбардировке их дейтронами:

Li 7 + H 2 ® 2He 4 + n 1 .

Максимальное же значение массы нейтрона, полученное через энергетические балансы, составило, судя по сводке результатов в , 1.0090, причём доверительные интервалы у минимального и максимального значений далеко не перекрывались. Это было обусловлено, на наш взгляд, двумя методологическими ошибками. Во-первых, в энергетический баланс включались как массы частиц, так и их кинетические энергии. На наш взгляд, такой подход некорректен, поскольку кинетическая энергия не является «довеском» к массе: согласно принципу автономных превращений энергии , наличие у частицы кинетической энергии означает, что её масса уменьшена на эквивалентную величину. Учёт же кинетической энергии прибавлением её к массе частицы являлся, на наш взгляд, одной из главных причин систематических расхождений между значениями масс изотопов, полученными в масс-спектроскопии и через балансы энергии ядерных превращений . Во-вторых, не принималось в расчёт, что промежуточное или конечное ядро могло при своём формировании оказаться в возбуждённом состоянии и, соответственно, излучить g -квант – тогда энергетический баланс был бы неполным, поскольку использовавшиеся значения масс элементов были получены для основных состояний их ядер.

Оба этих источника ошибок отсутствуют в способе нахождения массы нейтрона через измерение энергии связи дейтрона – при известных массах атома водорода и дейтерия (1.0078 и 2.0136 соответственно ). Об энергии связи здесь можно судить, зная энергию g -кванта, вызывающего фотораспад дейтрона. Чедвик и Голдхабер использовали излучение с энергией 2.62 МэВ, заведомо превышающей искомую энергию связи. Считалось, что разность между энергией g -кванта и энергией связи полностью превращалась в кинетические энергии освобождаемых протона и нейтрона – причём, из-за близости масс протона и нейтрона, эти энергии считались одинаковыми. Таким образом, требовалось измерить лишь энергию, например, протона распада – что делалось с помощью ионизационной камеры. При найденном значении этой энергии примерно в 250 кэВ, результирующая величина массы нейтрона составила 1.0080± 0.0005 . О таком же значении сообщили Изинг и Хелде , использовавшие ту же методику. Но и здесь не обошлось без разброса результатов: несколько позднее Чедвик, Физер и Бретчер опубликовали значение 1.0090 .

Едва ли можно сомневаться в том, что этот разброс результатов был обусловлен, в основном, несовершенством такого измерительного прибора, как ионизационная камера. Но, для единства измерений и вычислений в ядерной физике, требовалось уменьшить неопределённость в значении массы нейтрона. Своеобразие ситуации заключалось в том, что, для уменьшения этой неопределённости, можно было приписать нейтрону любое значение массы, не выходившее за пределы имевшегося на то время разброса в пару масс электрона. При небольшой ошибке приписанной нейтрону массы, энергии связи ядер тоже были бы известны с соответствующими небольшими ошибками – но зато единообразно. В этом, по-видимому, и заключалась причина того, что уменьшение неопределённости массы нейтрона было осуществлено не через увеличение точности измерений, а, фактически, волевым актом, выполненным теоретиком Бете . Он сделал расчёт массы нейтрона на основе самых достоверных, с его точки зрения, параметров и переводных коэффициентов, и привёл анализ погрешностей – однако, не пояснил, отчего разброс результатов измерений по одной и той же методике, выполненных на различных установках, на порядок превышал вычисленный им доверительный интервал. Но поскольку предложенное Бете значение, 1.00893± 0.00005 , обеспечивало единство измерений и вычислений на многие годы вперёд, его-то и включили в справочные издания (см., например, ) – а впоследствии, при переходе на углеродную шкалу атомных весов , внесли в него соответствующую поправку.

Следует добавить, что, после принятия значения Бете, неоднократно сообщалось о согласующихся с ним результатах новых измерений энергии связи дейтрона, дававших значения около 2.22 МэВ. Эти результаты принимались некритично – а ведь там имелись основания для сомнений.

Так, Хэнсон расщеплял дейтерий g -квантами либо из ториевого источника (2.623 МэВ), либо – из лантанового (2.3 МэВ). Некоторые из нейтронов распада, выйдя из ёмкости с дейтерием и пройдя сквозь свинцовую защиту, попадали в пропорциональный счётчик; там нейтрон мог передать свою энергию протону наполнителя – и счётчик генерировал электрический импульс с соответствующей амплитудой. Считалось, что максимальная измеренная энергия протона равна энергии нейтрона распада, и что вычитание её удвоенного значения из энергии исходного g -кванта давало искомую энергию связи дейтерия. Но, обратите внимание: указав, что «на большей части измерений, наполнителем счётчика был водород или дейтерий», автор далее не уточнял, с каким конкретно из этих наполнителей он получал свои результаты. А ведь они должны были различаться: если, в случае наполнителя-водорода, нейтрон распада передавал энергию действительно протону, то, в случае наполнителя-дейтерия, нейтрон передавал энергию дейтрону, масса которого вдвое больше массы протона. Во втором случае энергия, которую детектировал бы пропорциональный счётчик, составляла бы не более 8/9 от энергии нейтрона распада – и это при абсолютно упругом столкновении нейтрона с дейтроном. Но ведь не было гарантий, что эти столкновения были абсолютно упругими – часть энергии нейтрона могла превращаться в энергию возбуждения дейтрона, которую счётчик игнорировал бы. Вот почему результаты работы вызывают у нас недоверие – тем более что найденная энергия связи дейтрона составила 2.229 МэВ для случая ториевого источника и 1.998 для случая лантанового, так что вторую из этих цифр автор даже не внёс в итоговую таблицу.

Далее, классическими считаются эксперименты Белла и Эллиота , которые утверждали, что прямо измерили энергию g -квантов, излучаемых при соединении нейтрона и протона в дейтрон. Поток тепловых нейтронов из атомного реактора направлялся в парафиновую болванку, где происходил синтез дейтронов, т.е. реакция H 1 (n ,g )D 2 . Характеристическое g -излучение коллимировалось на лоскуток урановой фольги. Считалось, что g -квант выбивал из атома урана один из наиболее сильно связанных электронов – например, из К-оболочки – и что искомая энергия g -кванта равнялась сумме кинетической энергии выбитого электрона и его энергии связи в атоме урана. Измерения же кинетической энергии выбитых электронов делались с помощью двухкатушечного бета-спектрометра, причём эти измерения были не абсолютными, а относительными – через отношение к энергии таких же электронов, выбиваемых g -квантами с калиброванной энергией, 2.615 МэВ. Здесь у нас вызывает сомнения допущение о том, что g -квант с энергией в два с лишним МэВ способен воздействовать непосредственно на атомарный электрон. Можно допустить, что на такое непосредственное воздействие ещё способен квант, энергия которого не превышает суммы энергии связи электрона в атоме и предельной кинетической энергии освобождённого электрона, которая составляет, на наш взгляд, около 170 кэВ – но кванты с энергиями, большими этой суммы, должны воздействовать только на ядро . О верности именно такого подхода с очевидностью свидетельствует огромная ширина полученных в энергетических пиков для электронов, выбитых с К- и L -оболочек. При достаточно высоком разрешении бета-спектрометра, эта ширина (~ 60 кэВ) совершенно нетипична для атомных уровней энергии, но как раз типична для полных ширин ядерных линий . Это говорит о том, что бета-спектрометром измерялась энергия конверсионных электронов. Т.е., g -квант – как измеряемый, так и калибровочный – поглощался ядром урана, возбуждение которого снималось, например, через каскадное излучение вторичных g -квантов, лишь один из которых выбивал конверсионный электрон. При этом не было гарантий, что такое выбивание, в случаях измеряемого и калибровочного квантов, происходило в результате излучательных ядерных переходов на один и тот же уровень . И тогда, относительные измерения бета-спектрометром не могли дать информацию об истинном значении энергии измеряемого кванта – а, значит, и об энергии связи дейтрона.

Далее, упомянем работу Мобли и Лаубенстейна , которые утверждали, что измерили пороговую энергию фоторасщепления дейтрона. Необходимое для этого излучение, как считалось, имело тормозной характер, возникая в результате взаимодействия высокоэнергичного пучка электронов с золотой мишенью. Рождавшиеся, якобы, при этом рентгеновские кванты – с энергиями вплоть до двух с лишним МэВ – попадали в ёмкость с тяжёлой водой. Нейтроны, освобождаемые там, якобы, при фотораспаде дейтерия, могли преодолеть свинцовую защиту и попасть в пропорциональный счётчик, который использовался не как измеритель энергии нейтронов, а просто как их детектор. Об энергии связи дейтрона судили по энергии электронов пучка (~ 2.23 МэВ), при которой начинался рост числа нейтронов, детектируемых счётчиком. Как можно видеть, у авторов имеется несколько весьма спорных допущений. Если электрон может иметь энергию в несколько МэВ, то почему было не найти пороговую энергию распада дейтрона, обойдясь без генерации тормозного излучения – используя электронный удар? Дело, оказывается, в том, что электроны не инициируют ядерных реакций . Эту загадочную особенность мы объясняем тем , что кинетическая энергия электрона не может превышать трети его массы покоя, т.е. примерно 170 кэВ – значит, энергия электрона всегда меньше самых низких порогов ядерных реакций. Весьма курьёзно, что авторы выполнили калибровку энергии первичных частиц с протонным пучком – по известному порогу (1.882 МэВ) реакции Li 7 (p ,n ) – а измерения проводили с электронным пучком, полагая, что одинаковое ускоряющее напряжение сообщает одинаковую энергию как протону, так и электрону. На наш взгляд, в данном случае это неверно: иметь энергию в несколько МэВ протон может, а электрон – нет . И тогда в работе электроны никак не могли генерировать тормозные фотоны с энергиями в два с лишним МэВ – а, значит, и порог фотораспада дейтрона не мог быть измерен.

Суммируя вышеизложенное, мы не усматриваем надёжных экспериментальных свидетельств о том, что масса нейтрона больше массы протона именно на 2.5 массы электрона. Действительная разность масс нейтрона и протона вполне может составлять 1.5 массы электрона – как это следует из излагаемых ниже представлений.

Квантовые пульсации и связь «на дефекте масс».

Наши представления о нуклонах являются следствием концепции, согласно которой вещество на фундаментальном уровне имеет «цифровую», а не «аналоговую» природу. Эта «цифровая» природа свидетельствует, на наш взгляд, о том, что существуют специальные программные предписания, которые формируют элементарные частицы в физическом мире и задают их физические свойства, включая всевозможные варианты взаимодействий, в которых они могут участвовать.

Базовым понятием этой концепции является понятие квантового пульсатора , физической реализацией которого является, например, электрон. Напомним, что квантовый пульсатор – это истинно элементарная частица вещества, которая характеризуется циклической сменой всего двух состояний. Собственная частота f свободного квантового пульсатора, его же собственная энергия E и его масса m связаны соотношением де Бройля : E =hf =mc 2 , где h – постоянная Планка, c – скорость света. Как можно видеть, частота квантовых пульсаций электрона составляет около 1.24× 10 20 Гц. Эту частоту мы называем электронной: наличие у частицы пульсаций на электронной частоте означает наличие у неё электрического заряда; знак же заряда определяется фазой пульсаций – разноимённые заряды пульсируют в противофазе . Временную развёртку квантовых пульсаций можно проиллюстрировать меандром, т.е. прямоугольной волной; следует лишь иметь в виду, что амплитуда этой волны не имеет физического смысла – это подчёркивается тем, что энергия квантовых пульсаций зависит только от их частоты.

Квантовые пульсации могут быть промодулированы по «амплитуде» - со стопроцентной глубиной. Такая модуляция означает, фактически, циклическое прерывание квантовых пульсаций, т.е. их циклическое «включение-выключение». Как отмечалось ранее , энергия модулированных квантовых пульсаций меньше, чем немодулированных, и равна h (f -W ), где W - частота модуляции; соответственно, меньше и масса частицы.

Как мы полагаем, атомные структуры формируются благодаря противофазным прерываниям электронных пульсаций у атомарного электрона и у соответствующего ему положительного заряда ядерного протона. Такие прерывания двух пульсаторов порождают специфическую форму движения: циклические перебросы состояния, при котором пульсации «включены» – из точки нахождения одного пульсатора в точку нахождения другого, и обратно. Эта форма движения обладает некоторой энергией, зависящей от расстояния, на которое производятся циклические перебросы состояния. Если эта энергия появляется именно за счёт убыли собственной энергии пульсаторов, обусловленной их прерываниями, то эти два пульсатора вынуждены находиться на вполне определённом расстоянии друг от друга – в этом, как мы полагаем, и заключается природа связи «на дефекте масс» .

Такой подход выглядит предпочтительнее подхода официальной физики, в которой объяснение дефекта масс до сих пор отсутствует – что обусловлено, на наш взгляд, необоснованным допущением универсальности эйнштейновского выражения E =mc 2 . Действительно, считается, что это выражение справедливо для любой формы энергии. Но тогда, в случае с энергией связи «на дефекте масс», выходит казус. Если эта энергия связи, как казалось бы, положительна, то должен иметь место не дефект масс, а, наоборот, прирост. Если же она отрицательна, то и эквивалентная ей масса должна быть отрицательна – но, насколько нам известно, масса является принципиально положительной величиной. Разгадка, на наш взгляд, весьма проста: массе эквивалентна не любая форма энергии, а одна-единственная: собственная энергия квантового пульсатора . Потому и обнаруживается «дефект масс», что энергия связи, которая массе не эквивалентна, появляется за счёт убыли собственной энергии связуемых квантовых пульсаторов.

Нейтрон: связь «на приросте масс».

Протон, на наш взгляд, является квантовым пульсатором, имеющим модуляцию с электронной частотой и фазой положительного заряда; несущую же частоту протона можно определить из того условия, что масса протона соответствует частоте, равной разности несущей и электронной частот – при этом несущая составляет около 2.27× 10 23 Гц. Заметим, что масса протона меньше массы, соответствующей несущей, не из-за «дефекта масс». В протоне нет никаких суб-частиц: нельзя сказать, что он является соединением, например, массивного керна и позитрона. Названное уменьшение массы обусловлено всего лишь прерываниями несущей с электронной частотой – положительный заряд оказывается не присоединён, а как бы «вшит» через модуляцию.

Нейтрон же, на наш взгляд – это именно соединение, но такое соединение, состав участников которого циклически обновляется: пара «протон плюс электрон» принудительно сменяется парой «позитрон плюс антипротон», и обратно. Диаграмма иллюстрирует фазировки у двух «дорожек» результирующих квантовых пульсаций. Огибающая одной из этих дорожек задаёт положительный электрический заряд, а огибающая другой – отрицательный; высокочастотное же заполнение (несущая) перебрасывается из одной огибающей в другую – с частотой, вдвое меньшей электронной. На тех периодах электронной частоты, когда несущая находится в «положительной дорожке», составляющей нейтрон парой являются протон и электрон, а на тех периодах, когда несущая находится в «отрицательной дорожке» - позитрон и антипротон.

Как можно видеть, перебросы несущей из одной огибающей в другую – это циклическая смена состояний, которая обладает определённой энергией. Заметим, что эта энергия появляется не за счёт уменьшения собственных энергий участников процесса: она

добавляется к их собственным энергиям – отчего результирующая масса системы должна увеличиться на соответствующую величину. По логике концепции квантовых пульсаций, энергия циклических смен двух состояний равна произведению постоянной Планка на частоту этих смен. Поскольку, в рассматриваемом случае, эта частота вдвое меньше электронной, то результирующий прирост массы, по сравнению с суммой масс протона и электрона, должен составлять половину массы электрона. Теперь заметим, что энергия циклических смен пар, составляющих нейтрон, и энергия циклических пространственных перебросов несущей между «положительным» и «отрицательным» пульсаторами – это одна и та же энергия. А поскольку энергия циклических пространственных перебросов зависит от расстояния, на которое они производятся, то два пульсатора, составляющие нейтрон, обязаны находиться на определённом расстоянии друг от друга. Таким образом мы и объясняем природу связи «на приросте масс», благодаря которой существуют нейтроны. Используя формулы статьи , можно оценить расстояние, которое должно разделять центры двух пульсаторов в нейтроне: оно составляет ~ 2.8× 10 -15 м.

Как можно видеть, в нейтроне всегда присутствуют единичные разноимённые заряды, которые компенсируют друг друга – потому нейтрон электрически нейтрален. Вместе с тем, эти заряды образуют электрический диполь, у которого дипольный момент циклически инвертируется. Этим, на наш взгляд, и объясняется загадочная способность нейтрона к слабому участию в электромагнитных взаимодействиях – отчего наблюдается, например. пространственная селекция летящих нейтронов в сильных неоднородных электрических и магнитных полях.

Подчеркнём, что связь «на приросте масс» имеет принципиальное отличие от связи «на дефекте масс»: свободный нейтрон нельзя расщепить на составляющие с помощью, например, g -кванта – нейтрон не может его поглотить, т.к. нейтрону «некуда» возбуждаться. Вместе с тем, энергия связи в нейтроне должна быть превращаема в другие формы энергии – согласно закону сохранения энергии. Поэтому, при распаде свободного нейтрона, энергия связи в нём должна превращаться, на наш взгляд, в энергию g -излучения – но никак не в энергию антинейтрино (напомним, что гипотеза о нейтрино понадобилась, чтобы спасти закон сохранения релятивистского импульса, который с очевидностью нарушался при бета-распаде ). Что же касается причины распада свободного нейтрона, то она остаётся непонятна, поскольку, по логике вышеизложенного, даже при «приросте масс» нейтрон должен быть вполне стабильным объектом. Возможно, разгадка этой проблемы связана с тем, что вывод о нестабильности свободного нейтрона был сделан на основе экспериментов лишь с нейтронами, вылетающими из атомных котлов – нельзя исключить, что такие нейтроны, освобождаемые при распадах тяжёлых ядер, имеют какую-то особенность.

Небольшое обсуждение.

Вышеизложенные представления о нейтроне позволяют нам предложить более простые – и, на наш взгляд, более реалистичные – интерпретации некоторых ключевых экспериментов в физике элементарных частиц.

Так, согласно традиционным представлениям, ядра природных изотопов состоят из протонов и нейтронов – и, в частности, там нет и не может быть антипротонов. Считается, что антипротон может родиться при достаточно высокой энергии столкновения частиц – причём, родиться в паре с протоном, чтобы были соблюдены законы сохранения . Полагают, что именно такие рождения пар протон-антипротон происходили в эксперименте открывателей антипротона , которые направляли высокоэнергичные протоны на медную мишень и, среди продуктов реакции, регистрировали частицы, имевшие массу протона и отрицательный электрический заряд. Этот эксперимент считается также блестящим подтверждением специальной теории относительности, поскольку пара протон-антипротон рождалась, якобы, за счёт кинетической энергии исходного протона.

Но, на наш взгляд, о «блестящем подтверждении» здесь говорить не приходится. Ведь если верны вышеизложенные представления, то, в течение половины времени существования нейтрона, в его состав входит антипротон. Тогда проще допустить, что антипротоны не рождались, а выбивались из ядер мишени – при расщеплении ядерного нейтрона на антипротон и позитрон в результате воздействия, произошедшего на соответствующем полупериоде циклических превращений в нейтроне. При этом, конечно, ядро должно было превращаться в другой изотоп – а, по ортодоксальной версии, оно должно было оставаться прежним. Соответствующего анализа не проводилось, и данные о том, изменялось ядро или нет, отсутствуют. Поэтому нельзя считать доказанным, что антипротон рождался за счёт кинетической энергии исходного протона; версия же с выбиванием антипротона из ядра выглядит, на наш взгляд, гораздо правдоподобнее.

Добавим, что аналогично тому как протон и антипротон отличаются друг от друга тем, что имеют противоположные фазы прерывания несущей, нейтрон и антинейтрон отличаются друг от друга тем, что имеют противоположные фазы циклических превращений пар, входящих в их состав. Впрочем, в отличие от случая фиксированной фазы прерываний, задающей положительный или отрицательный электрический заряд, фаза циклических превращений пар в нейтроне не обязана быть фиксированной и может «плавать» – поэтому разница между понятиями «нейтрон» и «антинейтрон» является, на наш взгляд, весьма условной.

Заключение.

Поскольку у составных атомных ядер всегда имеется дефект масс, то значения массы нейтрона и энергии связи ядер оказываются взаимозависимы: если мы осознаем, что следует уменьшить значение массы нейтрона, то – при тех же самых значениях масс изотопов – придётся соответствующим образом уменьшить и значения энергии связи ядер. При уменьшении значения массы нейтрона на одну массу электрона, соответствующее уменьшение энергии связи на нуклон было бы особенно значительно для лёгких ядер, достигая у дейтрона 23%. Но для средних и тяжёлых ядер это уменьшение не превысило бы 4% - и здесь зависимость энергии связи на нуклон от атомного номера почти не изменила бы свой вид.

Впрочем, не коррекция энергий связи ядер была главной целью данной статьи. Как мы полагаем, неадекватность традиционных представлений о нейтроне является одной из главных причин того, что до сих пор не было предложено простой универсальной модели ядерных сил. А вышеизложенные представления открывают перспективы для построения такой модели; эту тему мы намереваемся обсудить в другой статье.

1. К.Н.Мухин. Экспериментальная ядерная физика. В 2-х томах. Т.1, «Физика атомного ядра». М., «Атомиздат», 1974.

2. Экспериментальная ядерная физика. Под ред. Э.Сегре. В 3-х томах. Т.1. М., «Изд-во иностранной литературы», 1955.

3. Д.Д.Странатан. «Частицы» в современной физике. М.-Л., «Гос. изд-во технико-теоретической литературы», 1949.

4. C.C.Lauritsen, H.R.Crane. Phys.Rev., 45 (1934) 550.

5. А.А.Гришаев. Автономные превращения энергии квантовых пульсаторов – фундамент закона сохранения энергии. – Доступна на данном сайте.

6. H.Bethe. Phys.Rev., 47 (1935) 633.

7. J.Chadwick, M.Goldhaber. Nature, 134 (1934) 237.

8. G.Ising, M.Helde. Nature, 137 (1936) 273.

9. H.A.Bethe. Phys.Rev., 53 (1938) 313.

10. В.А.Кравцов. Массы атомов и энергии связи ядер. М., «Атомиздат», 1974.

11. A.O.Hanson. Phys.Rev., 75 (1949) 1794.

12. R.E.Bell, L.G.Elliott. Phys.Rev., 79 (1950) 282.

13. Э.В.Ланько, Г.С.Домбровская, Ю.К.Шубный. Вероятности электромагнитных переходов атомных ядер. «Наука», Л., 1972.

14. R.C.Mobley, R.A.Laubenstein. Phys.Rev., 80 (1950) 309.

15. Г.Кноп, В.Пауль. Взаимодействие электронов и a -частиц с веществом. В кн.: Альфа-, бета- и гамма-спектроскопия, т.1. Пер. с англ. под ред. К.Зигбана. М., «Атомиздат», 1969.

16. А.А.Гришаев. Масса, как мера собственной энергии квантовых осцилляторов. – Доступна на данном сайте. nevessky _ o _ zakone .

18. А.А.Гришаев. Разноимённые электрические заряды, как противофазные квантовые пульсации. – Доступна на данном сайте.

19. Л.Кёртис. Введение в нейтронную физику. «Атомиздат», М.. 1965.

20. К.Н.Мухин. Экспериментальная ядерная физика. В 2-х томах. Т.2, «Физика элементарных частиц». М ., « Атомиздат », 1974.

21. O.Chamberlain, E.Segre, C.Wiegand, T.Ypsilantis. Phys.Rev., 100 (1955) 947.

Экспериментально обнаружен новый тип распада нейтрона — радиационный бета-распад. Это открытие стало возможным благодаря развитию детекторов частиц низкой энергии.

Жизнь большинства известных на сегодня элементарных частиц ярка и быстротечна. Родившись в реакции столкновения протонов или электронов вместе с разнообразными собратьями, они успевают пролететь микроскопическое расстояние и тут же распадаются на другие частицы. Конечные состояния их распада (как говорят физики, каналы распада ) могут быть самые разнообразные; главное — чтобы не нарушились фундаментальные законы физики (законы сохранения заряда, энергии и т. д.). У некоторых частиц таких каналов распада известно уже более ста.

Лишь небольшое число частиц живет достаточно долго, чтобы вступить, скажем так, в непосредственный контакт с окружающим миром. За время своей жизни они успевают пролететь существенную дистанцию: сантиметры, метры, и совсем уж в редких случаях — километры, но и они, по человеческим меркам, распадаются очень быстро — за какие-то доли секунды.

И вот, после более чем полувековой истории изучения этой частицы, физики, похоже, смогли обнаружить второй тип распада нейтрона . В препринте российско-бельгийско-немецкой группы исследователей nucl-ex/0512001 сообщается об успешном наблюдении радиационного бета-распада нейтрона, т. е. его распада на протон, электрон, антинейтрино и фотон . Зарегистрировать такой распад удалось с помощью техники тройного совпадения: одновременного вылета электрона и фотона и измерения импульса отдачи, получаемого протоном.

Вообще говоря, для теоретиков это открытие не является сюрпризом. Известно, что во всех типах реакций с заряженными частицами (а протон и электрон электрически заряжены) могут вылетать и фотоны, «в нагрузку» к остальным частицам. Однако наблюдение этого распада в случае нейтрона оказалась очень сложной с технической точки зрения задачей. Ведь все вылетающие частицы имеют очень небольшие энергии, и поэтому их трудно «уловить» детекторами.

Предыдущая попытка той же самой группы в 2002 году найти этот распад окончилась неудачей: точности регистрирующей аппаратуры не хватало для его обнаружения. Сейчас же, после апгрейда детекторов и улучшения процедуры обработки данных, исследователи наконец-то обнаружили, что в среднем в одном из трехсот случаев свободные нейтроны предпочитают распадаться с испусканием фотона.

Точность проведенного эксперимента пока невелика, и может статься (хотя вероятность этого мала), что весь обнаруженный «сигнал» — это лишь результат случайного наложения фоновых процессов. Однако авторы замечают, что возможно дальнейшее усовершенствование методики, которое позволит достичь 10-процентной точности измерения вероятности этого распада.

Физики из Калифорнийского университета в Сан-Диего предложили объяснить с помощью темной материи расхождение между «бутылочными» и «пучковыми» экспериментами по определению времени жизни свободного нейтрона. Для этого около одного процента распадов нейтронов должно содержать в качестве конечного продукта частицу темной материи, масса которой практически совпадает с массой протона. Статья опубликована в Physical Review Letters , кратко о ней сообщает Physics .

В связанном состоянии (внутри атомного ядра) нейтроны могут жить неограниченно долго, однако свободные нейтроны быстро распадаются. Как правило, продуктами такого распада выступает протон, электрон и электронное антинейтрино n p + e − + ν e * (так называемый ), хотя Стандартная модель разрешает и более экзотические процессы, например, радиативный бета-распад или распад с образованием атома водорода. Теоретические оценки на время жизни свободного нейтрона, распадающегося по такому каналу, существенно зависят от величины константы связи аксиального вектора с обычным (axial-vector to vector coupling ratio), которая измерена с относительной погрешностью около 0,2 процента. Это мешает точно оценить время жизни нейтрона. В настоящее время теоретические расчеты предсказывают продолжительность жизни от 875 до 891 секунды, то есть порядка 15 минут.

С другой стороны, время жизни нейтрона можно измерить напрямую, причем сразу двумя легко реализуемыми на практике способами. В первом типе экспериментов ученые охлаждают частицы до низкой температуры, помещают их в гравитационную ловушку , напоминающую по своей форме вытянутую бутылку, и измеряют, как число нейтронов в ловушке N зависит от времени. Сравнивая затем измеренную экспериментально зависимость с экспоненциальным законом N ~ exp(−t /τ), можно найти характерное время жизни нейтрона τ = τ бутылка. Во втором типе экспериментов физики получают пучок нейтронов и измеряют, сколько в нем содержится протонов, образовавшихся в результате бета-распада. Это позволяет определить скорость распада , а следовательно, и его характерное время, совпадающее со временем жизни нейтрона τ = τ пучок.

Проблема заключается в том, что результаты измерений, выполненных различными способами, отличаются почти на десять секунд - в то время как бутылочные эксперименты дают значение τ = 879,6±0,6 секунд, эксперименты с пучками приводят к заметно большему значению τ = 888±2 секунды. Таким образом, расхождение между этими результатами достигает 4 . Причинами подобного расхождения могут быть как систематические ошибки, упущенные из виду сразу несколькими группами экспериментаторов, так и фундаментальные механизмы, указывающие на физику за пределами Стандартной модели.

Физики Бартош Форнал (Bartosz Fornal) и Бенджамин Гринштейн (Benjamín Grinstein) предлагают объяснить расхождение между результатами различных экспериментов с помощью . В самом деле, в «пучковом» способе предполагается, что в результате распада сто процентов нейтронов превращается в протоны плюс еще какие-нибудь менее массивные частицы (фотоны, нейтрино и так далее). Если же небольшая часть этих распадов будет происходить по «невидимому» каналу, то есть будет содержать в качестве конечных продуктов частицу темной материи, очень слабо взаимодействующую с веществом, то скорость распада и рассчитанное на ее основе время жизни надо будет немного подкорректировать. Грубо говоря, при наличии «невидимого» канала скорость распада занижается, и экспериментаторам кажется, будто нейтроны живут немного дольше. Если точнее, истинное время жизни можно восстановить, если умножить время τ пучок на отношение Br между числом реакций с участием частиц Стандартной модели и полным числом реакций (физики называют такое отношение «коэффициентом ветвления» , branching ratio). Чтобы увязать результаты «бутылочных» и «пучковых» экспериментов, отношение должно быть примерно равно Br ≈ 0,99, то есть около одного процента распадов должны идти по «невидимому» каналу.

Ученые предлагают два возможных канала распада с участием частиц темной материи. Один из них «невидим» полностью (включает в качестве конечных продуктов только частицы темной материи), а другой «невидим» только частично, то есть помимо массивной частицы темной материи содержит сравнительно легкие частицы Стандартной модели - фотоны, электроны, позитроны и так далее. К сожалению, при введении в теорию подобных каналов становится возможным распад протона, который на практике не наблюдается ; тем не менее, физики показали, что такие распады будут запрещены, если масса «невидимой» частицы будет лежать в диапазоне от 937,9 до 939,6 мегаэлектронвольт. Кроме того, дальнейший распад частицы с образованием протона будет невозможен, если ее масса будет меньше, чем 938,8 мегаэлектронвольт. При таком условии время жизни образовавшейся частицы будет довольно большим, что делает ее хорошим кандидатом на роль частицы темной материи.


«Невидимый» распад нейтрона на частицы темной материи

B. Fornal & B. Grinstein / Phys. Rev. Lett.


«Частично невидимый» распад нейтрона на частицу темной материи и фотон

B. Fornal & B. Grinstein / Phys. Rev. Lett.


Наконец, физики более подробно изучили каждый из двух возможных каналов и уточнили параметры частиц, которые в них образуются. Так, например, энергия фотонов, которые рождаются наряду с долгоживущими частицами темной материи в «частично невидимом» канале, лежит в диапазоне от 0,782 до 1,664 мегаэлектронвольт, причем фотоны должны быть монохроматичны (то есть их энергия во всех распадах одинакова). Если же требование долгого времени жизни с частицы снять, нижняя граница на энергию фотонов исчезнет.

Хотя статья физиков в Physical Review Letters вышла только на прошлой неделе, на сайте препринтов arXiv.org она была опубликована еще 3 января 2018 года. Поэтому несколько групп ученых уже успели применить идеи Форнала и Гринштейна в своей работе. В частности, группа исследователей из Америки и Франции уже попытались обнаружить фотоны, которые рождаются в результате «частично невидимых» распадов нейтронов, просканировав диапазон энергий от 0.782 до 1.664 мегаэлектронвольт, - однако им так и не удалось зарегистрировать заметного сигнала, что исключает образование долгоживущих частиц темной материи в ходе распадов. Другие группы рассмотрели , как «невидимые» распады будут сказываться на эволюции нейтронных звезд - оказалось, что если бы такие распады действительно происходили, масса звезд быстро бы уменьшалась. Это противоречит наблюдениям астрономов; следовательно, в нейтронных звездах «невидимые» распады должны быть запрещены. Наконец, еще одна группа ученых показала , что аномально высокое содержание атомов 10 Be в продуктах распада 11 Be можно объяснить с помощью тех же самых механизмов, что и при распаде нейтрона.

Пока что ученым так и не удалось поймать в прямом эксперименте частицы темной материи, так что все свидетельства в пользу ее существования носят исключительно гравитационный характер. Вместо этого физики установили очень жесткие ограничения на сечение взаимодействия вимпов с веществом - так, наибольшее возможное значение этого сечения сейчас величиной порядка 10 −45 квадратных сантиметров. Тем не менее, исследователи не теряют надежды на успех - продолжают существующие экспериментальные установки, новые типы детекторов, ищут частицы темной материи других видов (например, или ), а также альтернативные способы детектирования частиц.

Дмитрий Трунин