Что входит состав нуклеотида днк. Нуклеиновые кислоты. ДНК: строение, свойства и функции. РНК: строение, виды, функции. Строение нуклеотида днк. Типы нуклеотидов

Доклад

Студенток 1 курса 13 группы Института фзической культуры и спорта

Факультета физической культуры для лиц с отклонениями в состоянии здоровья (адаптивная физическая культура)

Размус Алены

Семеновой Екатерины

по теме: «Нуклеиновые кисллоты».

    Нуклеиновые кислоты. Определение. Открытие. Виды нуклеиновых кислот.

    Нуклеотид. Состав. Строение.

    Правило Чааргафа

    ДНК. Модель Уотсона и Крика. Структура. Состав. Функции.

    РНК. Состав и ее разнообразие.

    ДНК – носитель наследственной информации.

    Краткие итоги.

Нуклеиновые кислоты.

Нуклеиновые кислоты (Нк)биополимеры, обеспечивающие хранение и передачу наследственной (генетической) информации в живых организмах.

Впервые Нк были описаны в 1868 году швейцарским биохимиком Фридрихом Мишером (1844-1895) .

Из остатков клеток, содержащихся в гное, он выделил вещество, в состав которого входили N 2 и P. Ученый назвал это вещество нуклеином (лат. nucleus – ядро), полагая, что оно содержится лишь в ядрах клеток. Позднее небелковая часть этого вещства была названа нуклеиновой кислотой .

Нуклеиновые кислоты в природе существут двух типов, различающиеся по составу, строению и функциям. Одна названа ДНК (дизоксирибонуклиновая кислота), а вторая РНК (рибонуклиновая кислота).

Нуклеиновые кислоты – это важнейшие биополимеры, определяющие основные свойства живого.

Нуклеотиды. Состав. Строение.

ДНК – это полимерная молекула, состоящая из десятков тысяч или миллионов мономеров – дезоксирибонуклеотидов .

Определение размеров молекул ДНК стало возможным только после разработки специальных методов: электронной микроскопии, ультрацентрифугирования, электрофореза. При полном гидролизе эти молекулы расщепляются до пуриновых и пеиримидиновых оснований, пятиугольного моносахарида дезоксирибозы и фосфорной кислоты.

Пуриновые основания – производные пурин. Из них в сосатв нуклеиновых кислот входят аденин и гуанин :

Пиримидиновые основания , содержащиеся в нуклеиновых кислотах, - цитозин и тимин в ДНК, цитозин и урацил в РНК – это производные пиримидина:

Тимин отличается от урацила наличием метильной группы (-СН 3). Пуриновые и пиримидиновые основания называются азотистыми основаниями .

При мягком гидролизе нуклеиновых кислот получали соединения, дезоксирибоза которых была связана с пуриновым или пиримидиновым основанием посредством атома N 2 . Подобные соединения получили название нуклеозидов . Нуклеозиды,соединяясь с одной молекулой фосфорной кислоты, образуют более сложные вещества – нуклеотиды . Именно они являются мономерами нуклеиновых кислот ДНК и РНК.

Итак, нуклеотид состояит из остатков азотистого основания, сахара – пентозы и фофорной кислоты.

Правило Эрвина Чааргафа.

Нуклеотидный состав ДНК впервые количественно проанализировал американский биохимик Эрвин Чааргаф , который в 1951 году доказал, что в составе ДНК имеются четыре основания. Э. Чааргаф обнаружил, что у всех изученных им видов количество пуринового основания аденина (А) равно количеству пиримидинового основания тимина (Т) , т.е. А=Т .

Сходным образом количество пуринового основания гуанина (Г) всегда равно количеству пиримидинового основания цитозина (Ц) , т.е. Г=Ц . Таким образом, число пуриновых ДНК всегда равно числу пиримидиновых , т.е. количеству аденина равно количеству имина, а количество гуанина – количеству цитозина. Эта закономерность получило название правила Чааргафа .

Днк. Модель Уотсона и Крика. Структура. Состав. Функции.

В 1950 году английский физик Морис Хью Уилкинс получил рентгенограмму ДНК. Она показала, что молекула ДНК имеет определенную вторичную структуру, расшифровка которой помогла бы понять механизм функционирования ДНК. Рентегонграммы, полученные на высокоочищенной ДНК, позволили Розалинде Франклин , коллеге Уилкинса, увидеть четкий крестообразный рисунок – опознавательный знак двоной спирали. Стало извесно также, что нуклеотиды расположены друг от лруга на растоянии 0, 34 нм, а на один виток спирали их приходится 10. Диаметр молекулы ДНК составляет около 2 нм. Из рентгеноструктурных данных, однако, было неясно, каким образом цепи удерживаются вместе в молекулах ДНК.

Картна полностью прояснилась в 1953 году, когда американский биохимик Джеймс Уотсон и английский физик Фрэнсис Крик, рассмотрев совокупность известных данных о строении ДНК, пришли к выводу, что сахарофосфатный остов находится на периферии молекулы ДНК, а пуриновые и пиримидиновые основания – в середине. Причем последние ориентированы таким образом, что между основаниями противоположных цепей могут образовываться водородные связи. Из построенной ими модели выявилось, что пурин в одной цепи всегда связан водородными связями с противолежащим пиримидином в другой цепи.

Такие пары имеют одинаковый размер по всей длинне молекулы. Не менее важно то,что аденин может спариваться лишь с тимином, а гуанин только с цитозином. При этом между аденином и тимином образуются две водородные связи, а между гуанином и цитозином – три.

В каждой из цепей ДНК основания могут чередоваться всеми возможными способами. Если известна последовательность оснований в одной цепи (например, Т – Ц – Г – Ц – А – Т ), то благодаря специфичности спаривания (принцип дополнения, т.е. комплементарности ) становится извсетной и последовательность оснований ее партнера – второй цепи (А – Г – Ц – Г – Т – А ). Противолежащие последовательности и соответствующие полинуклеотидные цепи называют комплементарными . Хотя водородные связи, стабилизирующие пары оснований, относительно слабы, каждая молекула ДНК содержит так много пар, что в физиологических условиях (темпиратура, pH) комплименарные цепи никогда самостоятельно не разделяются.

В начале 50-х годов большая группа ученых под руководством английского ученого А. Тодда установила точную структуру связей, соединяющих нуклеотиды одной цепи. Все эти связи оказались одинаковыми: углеродный атом в 5"-положении остатка дезоксирибозы (цифры со штрихами обозначают углеродные атомы в пятичленном сахаре – рибозе или дизоксирибозе) одного нуклеотида соединяется через фосфатную группу с углеродным атомом в 3’-положени соседнего нуклеотида. Никаких признаков необычных связей обнаружено не было. А. Тодд с сотрудниками пришли к выводу, что полинуклеотидные цепи ДНК, так же как и полипиптидные цепи белка, строго линейные. Регулярно расположенные связи между сахарами и фосфатными группами образуют скелет полинуклеотидной цепи.

Напротив 5"-конца одной цеп находится 3’-конец комплементарной цепи. Такая ориентация цепей названа антипараллельной .

У всех живущих на Земле организмов ДНК представлена двухцепоными спиральными молекулами. Исключение составляют одноцепочные молекулы ДНК некоторых фагов – вирусов, поражающих бактериальные клетки. Эти одноцепочные ДНК всегда кольцевые. Двухцепочные ДНК бывают и кольцевые и линейные. Бактерии содержат только кольцевые формы ДНК. У растений, грибов и животных имеются и линейные (в ядре клетки), и кольцевые (в хлоропластахи митохондриях) молекулы.

Функции ДНК:

    Хранение информации

    Передача и воспроизведение в ряду поколений генетической информации

    ДНК определяет, какие белки и в каких количествах необходимо синтезировать

Дезоксирибонуклеиновая кислота - полимер, состоит из нуклеотидов.


Нуклеотид ДНК состоит из

  • азотистого основания (в ДНК 4 типа: аденин, тимин, цитозин, гуанин)
  • моносахара дезоксирибозы
  • фосфорной кислоты

Нуклеотиды соединяются между собой прочной ковалентной связью через сахар одного нуклеотида и фосфорную кислоту другого. Получается полинуклеотидная цепь .


Две полинуклеотидные цепи соединяются друг с другом слабыми водородными связями между азотистыми основаниями по правилу комплементарности : напротив аденина всегда стоит тимин, напротив цитозина - гуанин (они подходят друг другу по форме и числу водородных связей - между А и Т две связи, между Ц и Г - 3). Получается двойная цепь ДНК, она скручивается в двойную спираль .

Функция ДНК

ДНК входит в состав хромосом, хранит наследственную информацию (о признаках организма, о первичной структуре белков).


ДНК способна к самоудвоению (репликации, редупликации). Самоудвоение происходит в интерфазе перед делением. После удвоения каждая хромосома состоит из двух хроматид, которые во время будущего деления превратятся в дочерние хромосомы. Благодаря самоудвоению каждая из будущих дочерних клеток получит одинаковую наследственную информацию.

Отличия РНК от ДНК по строению

  • рибоза вместо дезоксирибозы
  • нет тимина, вместо него урацил
  • одноцепочечная

Виды РНК

  • информационная (матричная) РНК
    • переносит информацию о строении белка из ядра (от ДНК) в цитоплазму (к рибосоме);
    • меньше всего в клетке;
  • транспортная РНК
    • переносит аминокислоты к рибосоме;
    • самая маленькая, имеет форму клеверного листа;
  • рибосомная РНК
    • входит в состав рибосом;
    • самая большая по размерам и количеству

Задачи на правило комплементарности

Тимина в ДНК столько же, сколько аденина, остальное (до 100%) приходится на цитозин и гуанин, их тоже поровну. Например: если гуанина 15%, значит цитозина тоже 15%, итого 30%, значит, на аденин и тимин приходится 100-30=70%, следовательно аденина 70/2=35% и тимина тоже 35%

Выберите один, наиболее правильный вариант. Благодаря какому процессу в ходе митоза образуются дочерние клетки с набором хромосом, равным материнскому
1) образования хроматид
2) спирализации хромосом
3) растворения ядерной оболочки
4) деления цитоплазмы

Ответ


Рассмотрите рисунок с изображением фрагмента молекулы биополимера. Определите, (А) что служит ее мономером, (Б) в результате какого процесса увеличивается число этих молекул в клетке, (В) какой принцип лежит в основе ее копирования. Для каждой буквы выберите соответствующий термин из предложенного списка.
1) комплементарность
2) репликация
3) нуклеотид
4) денатурация
5) углевод
6) трансляция
7) транскрипция

Ответ


Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке молекулы органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) выполняет ферментативную функцию
2) хранит и передает наследственную информацию
3) состоит из двух нуклеотидных цепей
4) в комплексе с белками образует хромосомы
5) участвует в процессе трансляции

Ответ


Установите соответствие между характеристикой молекулы нуклеиновой кислоты и ее видом: 1) тРНК, 2) ДНК. Запишите цифры 1 и 2 в правильном порядке.
А) состоит из одной полинуклиотидной цепи
Б) транспортирует аминокислоту к рибосоме
В) состоит из 70-80 остатков нуклеотидов
Г) хранит наследственную информацию
Д) способна к репликации
Е) представляет собой спираль

Ответ


НУКЛЕОТИД ИЗ ДРУГОЙ ПАРЫ
1. В ДНК на долю нуклеотидов с тимином приходится 23%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите соответствующее число.

Ответ


2. В ДНК на долю нуклеотидов с цитозином приходится 13%. Определите процентное содержание нуклеотидов с аденином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


3. В ДНК на долю нуклеотидов с аденином приходится 18%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


4. В ДНК на долю нуклеотидов с тимином приходится 36%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


5. В ДНК на долю нуклеотидов с тимином приходится 28%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


НУКЛЕОТИД ИЗ ЭТОЙ ЖЕ ПАРЫ
1. Фрагмент молекулы ДНК содержит 15% аденина. Сколько тимина в этом фрагменте ДНК? В ответ запишите только число (количество процентов тимина).

Ответ


2. В некоторой молекуле ДНК на долю нуклеотидов с гуанином приходится 28%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


3. В некоторой молекуле ДНК на долю нуклеотидов с аденином приходится 37%. Определите процентное содержание нуклеотидов с тимином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


НУКЛЕОТИД - СУММА ОДНОЙ ПАРЫ
1. Какое процентное содержание нуклеотидов с аденином и тимином в сумме содержит молекула ДНК, если доля ее нуклеотидов с цитозином составляет 26% от общего числа? В ответе запишите только соответствующее число.

Ответ


2. В ДНК на долю нуклеотидов с цитозином приходится 15%. Определите процентное содержание нуклеотидов с тимином и аденином в сумме, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


СУММА ОДНОЙ ПАРЫ - НУКЛЕОТИД
1. Какой процент составляют нуклеотиды с аденином в молекуле ДНК, если нуклеотиды с гуанином и цитозином вместе составляют 18%? В ответе запишите только соответствующее число.

Ответ


2. В ДНК на долю нуклеотидов с гуанином и цитозином приходится 36%. Определите процентное содержание нуклеотидов с аденином, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


3. В некоторой молекуле ДНК на долю нуклеотидов с аденином и тимином в сумме приходится 26%. Определите процентное содержание нуклеотидов с гуанином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


4. В некоторой молекуле ДНК на долю нуклеотидов с цитозином и гуанином в сумме приходится 42%. Определите процентное содержание нуклеотидов с аденином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


5. В некоторой молекуле ДНК на долю нуклеотидов с аденином и тимином в сумме приходится 54%. Определите процентное содержание нуклеотидов с цитозином, входящих в состав этой молекулы. В ответе запишите только соответствующее число.

Ответ


СУММА РАЗНЫХ ПАР
1. Фрагмент молекулы ДНК содержит 10% тимина. Сколько аденина и гуанина в сумме в этом фрагменте ДНК? В ответ запишите только количество аденина и гуанина в сумме.

Ответ


2. В ДНК на долю нуклеотидов с тимином приходится 35%. Определите процентное содержание нуклеотидов с цитозином и аденином в сумме, входящих в состав молекулы. В ответе запишите только соответствующее число.

Ответ


Выберите три варианта. Чем молекула ДНК отличается от молекулы иРНК?
1) способна самоудваиваться
2) не может самоудваиваться
3) участвует в реакциях матричного типа
4) не может служить матрицей для синтеза других молекул
5) состоит из двух полинуклеотидных нитей, закрученных в спираль
6) является составной частью хромосом

Ответ



1. Проанализируйте таблицу. Наполните пустые ячейки таблицы, используя понятия и термины, приведенные и списке. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) урацил
2) построение тела рибосомы
3) перенос информации о первичной структуре белка
4) рРНК

Ответ



2. Проанализируйте таблицу. Для каждой ячейки, обозначенной буквами, выберите соответствующий термин из предложенного списка.
1) рРНК
2) образование в комплексе с белками тела рибосомы
3) хранение и передача наследственной информации
4) урацил
5) тРНК
6) аминокислота

8) синтез иРНК

Ответ


Выберите один, наиболее правильный вариант. К биологическим полимерам относят молекулу
1) рибозы
2) глюкозы
3) аминокислоты

Ответ


Выберите один, наиболее правильный вариант. Связь, возникающая между азотистыми основаниями двух комплементарных цепей ДНК
1) ионная
2) пептидная
3) водородная
4) ковалентная полярная

Ответ


Выберите один, наиболее правильный вариант. Соединение двух цепей в молекуле ДНК происходит за счет
1) гидрофобных взаимодействий нуклеотидов
2) пептидных связей между азотистыми основаниями
3) взаимодействий комплементарных азотистых оснований
4) ионных взаимодействий нуклеотидов

Ответ


Сколько нуклеотидов с цитозином содержит молекула ДНК, если количество нуклеотидов с тимином 120, что составляет 15% от общего числа? В ответе запишите соответствующее число.

Ответ


В РНК на долю нуклеотидов с урацилом и аденином приходится по 10%. Определите процентное содержание нуклеотидов с тимином входящих в состав комплементарной, двуспиральной цепи ДНК. В ответе запишите только соответствующее число.

Ответ


Участок цепочки ДНК бактериофага лямбда содержит 23 нуклеотида с тимином, сколько нуклеотидов с цитозином в этом участке, если его протяженность 100 нуклеотидов? В ответ запишите только количество нуклеотидов.

Ответ


В молекуле и-РНК содержится 200 нуклеотидов с урацилом, что составляет 10% от общего числа нуклеотидов. Сколько нуклеотидов (в %) с аденином содержит одна из цепей молекулы ДНК? В ответе запишите соответствующее число.

Ответ


Фрагмент молекулы ДНК содержит 60 нуклеотидов. Из них 12 нуклеотидов приходится на тимин. Сколько гуаниновых нуклеотидов содержится в этом фрагменте? В ответе запишите только число.

Ответ


Установите соответствие между признаком нуклеиновой кислоты и ее видом: 1) и-РНК, 2) т-РНК. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) имеет форму клеверного листа
Б) доставляет аминокислоты к рибосоме
В) имеет самые маленькие размеры из нуклеиновых кислот
Г) служит матрицей для синтеза белков
Д) передает наследственную информацию из ядра к рибосоме

Ответ


Установите соответствие между характеристиками и органическими веществами клетки: 1) иРНК, 2) тРНК, 3) рРНК. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) доставляет аминокислоты для трансляции
Б) содержит информацию о первичной структуре полипептида
В) входит в состав рибосом
Г) служит матрицей для трансляции
Д) активизирует аминокислоту

Ответ


1. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоит из двух полинуклеотидных цепей, закрученных в спираль
2) состоит из одной полинуклеотидной неспирализованной цепи
3) передает наследственную информацию из ядра к рибосоме
4) имеет самые большие размеры из нуклеиновых кислот
5) состоит из нуклеотидов АУГЦ

Ответ


2. Все перечисленные ниже признаки, кроме двух, можно использовать для описания молекулы РНК. Определите два признака, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) состоит из двух полинуклеотидных цепей, закрученных в спираль
2) переносит информацию к месту синтеза белка
3) в комплексе с белками строит тело рибосомы
4) способна самоудваиваться
5) переносит аминокислоты к месту синтеза белка

Ответ


Выберите один, наиболее правильный вариант. Копией одного или группы генов, несущих информацию о структуре белков, выполняющих одну функцию, является молекула

2) тРНК
3) АТФ
4) иРНК

Ответ


Участок одной из двух цепей молекулы ДНК содержит 300 нуклеотидов с аденином (А), 100 нуклеотидов с тимином (Т), 150 нуклеотидов с гуанином (Г) и 200 нуклеотидов с цитозином (Ц). Сколько нуклеотидов содержится в двух цепях ДНК? Ответ запишите в виде числа.

Ответ


1. Сколько нуклеотидов включает фрагмент двуцепочечной молекулы ДНК, содержащий 14 нуклеотидов с аденином и 20 нуклеотидов с гуанином? В ответе запишите только соответствующее число.

Ответ


2. Сколько нуклеотидов включает в себя фрагмент двуцепочечной молекулы ДНК, если в нём содержится 16 нуклеотидов с тимином и 16 нуклеотидов с цитозином? В ответе запишите только соответствующее число.

Ответ



Все перечисленные ниже признаки, кроме двух, используются для описания изображенной на рисунке схемы строения молекулы органического вещества. Определите два признака, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.

- это сложные мономеры, из которых собраны гетерополимерные молекулы. ДНК и РНК. Свободные нуклеотиды участвуют в сигнальных и энергетических процессах жизнедеятельности. ДНК-нуклеотиды и РНК-нуклеотиды имеют общий план строения, но различаются по строению сахара-пентозы. В ДНК-нуклеотидах используется сахар дезоксирибоза, а в РНК-нуклеотидах - рибоза.

Структура нуклеотида

В каждом нуклеотиде можно выделить 3 части:

1. Углевод - это пятичленный сахар-пентоза (рибоза или дезоксирибоза).

2. Фосфорный остаток (фосфат) - это остаток фосфорной кислоты.

3. Азотистое основание - это соединение, в котором много атомов азота. В нуклеиновых кислотах используется всего 5 видов азотистых оснований: Аденин, Тимин, Гуанин, Цитозин, Урацил. В ДНК - 4 вида: Аденин, Тимин, Гуанин, Цитозин. В РНК - тоже 4 вида: Аденин, Урацил, Гуанин, Цитозин, Легко заметить, что в РНК происходит замещение Тимина на Урацил по сравнению с ДНК.

Общая структурная формула пентозы (рибозы или дезоксирибозы), молекулы которой образуют "скелет" нуклеиновых кислот:

Если Х заменить на Н (Х = Н) - то получаются дезоксирибонуклеозиды; если Х заменить на ОН (Х = ОН) - то получаются рибонуклеозиды. Если вместо R подставить азотистое основание (пуриновое или пиримидиновое) - то получится конкретный нуклеотид.

Важно обратить внимание на те положения атомов углерода в пентозе, которые обозначены как 3" и 5". Нумерация атомов углерода начинается от атома кислорода вверху и идёт по часовой стрелке. Последним получается атом углерода (5"), который располагается за пределами пентозного кольца и образует, можно сказать, "хвостик" у пентозы. Так вот, при наращивании цепочки из нуклеотидов фермент может присоединить новый нуклеотид только к углероду 3" и ни к какому другому. Поэтому 5"-конец нуклеотидной цепочки никогда не сможет иметь продолжения, удлинняться может только 3"-конец.


Сравните нуклеотид для РНК с нуклеотидом для ДНК.

Попробуйте узнать, какой это нуклеотид, в таком представлении:

АТФ - свободный нуклеотид

цАМФ - "закольцованная" молекула АТФ

Схема строения нуклеотида


Обратите внимание на то, что активированный нуклеотид, способный наращивать цепочку ДНК или РНК, имеет "трифосфатный хвостик". Именно этим "энергонасыщенным" хвостиком он может присоединиться к уже имеющейся цепочке растущей нуклеиновой кислоты. Фосфатный хвостик сидит на 5-м атоме углерода, так что это положение углерода уже занято фосфатами и предназнено для прикрепления. К чему же его прикрепить? Только к углероду в положении 3". После прикрепления данный нуклеотид сам станет мишенью дла прикрепления следующего нуклеотида. "Принимающая сторона" предоставляет углерод в положении 3", а "прибывающая сторона" цепляется к нему фосфатным хвостиком, находящимся в положении 5". В целом цепочка растёт со стороны 3".

Наращивание нуклеотидной цепочки ДНК

Наращивание цепочки за счёт "продольных" связей между нуклеотидами может идти только в одном направлении: от 5" ⇒ к 3", т.к. новый нуклеотид можно присоединить только к 3"-концу цепочки, но не к 5"-концу.

Пары нуклеотидов, связанные "поперечными" комплементарными связями своих азотистых оснований

Участок двойной спирали ДНК

Найдите признаки антипараллельности двух цепей ДНК.

Найдите пары нуклеотидов с двойными и тройными комплементарными связями.

Нуклеиновые кислоты - фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации. Они были открыты в 1869 г. швейцарским биохимиком Ф. Мишером в ядрах лейкоцитов, сперматозоидов лосося. Впоследствии нуклеиновые кислоты обнаружили во всех растительных и животных клетках, вирусах, бактериях и грибах.

В природе существует два вида нуклеиновых кислот - дезок-сирибонуклеиновые (ДНК) ирибонуклеиновые (РНК). Различие в названиях объясняется тем, что молекула ДНК содержит пяти-углеродный сахар дезоксирибозу, а молекула РНК- рибозу. В настоящее время известно большое число разновидностей ДНК и РНК, отличающихся друг от друга по строению и значению в метаболизме.

ДНК находится преимущественно в хромосомах клеточного ядра (99% всей ДНК клетки), а также в митохондриях и хлоропластах. РНК входит в состав рибосом; молекулы РНК содержатся также в цитоплазме, матриксе пластид и митохондрий.

Нуклеотиды - структурные компоненты нуклеиновых кислот. Нуклеиновые кислотыпредставляют собой биополимеры, мономерами которых являются нуклеотиды.

Нуклеотиды -сложные вещества. В состав каждого нуклеотида входит азотистое основание, пятиуглеродный сахар (рибоза или дезоксирибоза) и остаток фосфорной кислоты.

Существует пять основных азотистых оснований: аденин, гуанин, урацил, тимин и цитозин. Первые два являются пуриновыми; их молекулы состоят из двух колец, первое содержит пять членов, второе - шесть. Следующие три являются пиримидинами и имеют одно пятичленное кольцо.

Вот как выглядит, например, формула тимидилового нуклеотида(тимидин):

Названия нуклеотидов происходят от названия соответствующих азотистых оснований; и те и другие обозначаются заглавными буквами: аденин - аденилат (А), гуанин - гуанилат (Г), цитозин - цитидилат (Ц), тимин - тимидилат (Т), урацил - уридилат (У).

Количество нуклеотидов в молекуле нуклеиновых кислот бывает разным - от 80 в молекулах транспортных РНК до нескольких сотен миллионов у ДНК.

ДНК. Молекула ДНК состоит из двух полинуклеотидных, спирально закрученных относительно друг друга цепочек.

В состав нуклеотидов молекулы ДНК входят четыре вида азотистых оснований: аденин, гуанин, тимин и цитоцин. В полинук-леотидной цепочке соседние нуклеотиды связаны между собой ковалентными связями, которые образуются между фосфатной группой одного нуклеотида и З"-гидроксильной группой пентозы другого. Такие связи называются фосфодиэфирными. Фосфатная группа образует мостик между З"-углеродом одного пентоз-ного цикла и 5-углеродом следующего. Остов цепей ДНК образован, таким образом, сахарофосфатными остатками (рис. 1.2).



Хотя в состав ДНК входит четыре типа нуклеотидов, благодаря различной последовательности их расположения в длинной цепочке достигается огромное разнообразие этих молекул.

Полинуклеотидная цепь ДНК закручена в виде спирали наподобие винтовой лестницы и соединена с другой, комплементарной ей цепью с помощью водородных связей, образующихся между адени-ном и тимином (две связи), а также гуанином и цитозином (три связи). Нуклеотиды А и Т, Г и Ц называются комплементарными.

Рис 1.2. Фрагмент молекулы ДНК (между А -Т - две водородные связи; между Г-Ц - три водородные связи).

В результате у всякого организма число адениловых нуклеотидов равно числу тимидиловых, а число гуаниловых - числу цитидиловых. Эта закономерность получила название «правило Чаргаффа». Благодаря этому свойству последовательность нуклеотидов в одной цепи определяет их последовательность в другой. Такая способность к избирательному соединению нуклеотидов называется комплемен-тарностью, и это свойство лежит в основе образования новых молекул ДНК на базе исходной молекулы (репликации, т. е. удвоения).

Цепи в молекуле ДНК противоположно направлены (антипа-раллелъностъ). Так, если для одной цепи мы выбираем направление от З"-конца к 5"-концу, то вторая цепь с таким направлением будет ориентирована противоположно первой - от 5-конца к З"-концу, иначе говоря, «голова» одной цепи соединяется с «хвостом» другой и наоборот.

Впервые модель молекулы ДНК была предложена в 1953 г. американским ученым Дж. Уотсоном и англичанином Ф. Криком на основе данных Э. Чаргаффа о соотношении пуриновых и пиримидиновых оснований молекул ДНК и результатов рентге-но-структурного анализа, полученных М. Уилкинсом и Р. Франклин. За разработку двухспиральной модели молекулы ДНК Уот-сон, Крик и Уилкинс были удостоены в 1962 г. Нобелевской премии.

ДНК - самые крупные биологические молекулы. Их длина составляет от 0,25 (у некоторых бактерий) до 40 мм (у человека). Это значительно больше самой крупной молекулы белка, которая в развернутом виде достигает длины не более 100-200 нм. Масса молекулы ДНК составляет 6x10 -12 г.

Диаметр молекулы ДНК 2 нм, шаг спирали 3,4 нм; каждый виток спирали содержит 10 пар нуклеотидов. Спиральная структура поддерживается многочисленными водородными связями, возникающими между комплементарными азотистыми основаниями, и гидрофобными взаимодействиями. Молекулы ДНК эука-риотических организмов линейны. У прокариот ДНК, напротив, замкнута в кольцо и не имеет ни 3-, ни 5-концов.

При изменении условий ДНК, подобно белкам, может под-. вергаться денатурации, которая называется плавлением. При постепенном возврате к нормальным условиям ДНК ренатурирует.

Функцией ДНК является хранение, передача и воспроизведение в ряду поколений генетической информации. В ДНК любой клетки закодирована информация обо всех белках данного организма, о том, какие белки, в какой последовательности и в каком количестве будут синтезироваться. Последовательность аминокислот в белках записана в ДНК так называемым генетическим (триплетным) кодом.

Основным свойством ДНК является ее способность к репликации.

Репликация - это процесс самоудвоения молекул ДНК, происходящий под контролем ферментов.Репликация осуществляется перед каждым делением ядра. Начинается она с того, что спираль ДНК временно раскручивается под действием фермента ДНК-полимеразы. На каждой из цепей, образовавшихся после разрыва водородных связей, по принципу комплементарности синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеотиды, которые есть в ядре (рис. 1.3).

Рис. 1.3.. Схема репликации ДНК

Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплементарной цепи (поэтому процесс удвоения молекул ДНК относится к реакциямматричного синтеза). В результате получается две молекулы ДНК, у каждой из которых " одна цепь остается от родительской молекулы (половина), а другая - вновь синтезированная. Причем одна новая цепь синтезируются сплошной, а вторая - сначала в виде коротких фрагментов, которые затем сшиваются в длинную цепь специальным ферментом-ДНК-лигазой. В результате репликации две новые молекулы ДНК представляют собой точную копию исходной молекулы.

Биологический смысл репликации заключается в точной передаче наследственной информации от материнской клетки к дочерним, что и происходит при делении соматических клеток.

РНК. Строение молекул РНК во многом сходно со строением молекул ДНК. Однако имеется и ряд существенных отличий. В молекуле РНК вместо дезоксирибозы в состав нуклеотидов входит рибоза, вместо тимидилового нуклеотида (Т) - уридило-вый (У). Главное отличие от ДНК состоит в том, что молекула РНК представляет собой одну цепь. Однако ее нуклеотиды способны образовывать водородные связи между собой (например, в молекулах тРНК, рРНК), но в этом случае речь идет о внутри-цепочечном соединении комплементарных нуклеотидов. Цепочки РНК значительно короче ДНК.

В клетке существует несколько видов РНК, которые различаются по величине молекул, структуре, расположению в клетке и функциям:

  1. Информационная (матричная) РНК(иРНК). Этот вид наиболее разнороден по размерам и структуре. иРНК представляет собой незамкнутую полинуклеотидную цепь. Она синтезируется в ядре при участии фермента РНК-полимеразы, комплементарна участку ДНК, на котором происходит ее синтез. Несмотря на относительно низкое содержание (3-5% РНК клетки), она выполняет важнейшую функцию в клетке: служит в качестве матрицы для синтеза белков, передавая информацию об их структуре с молекул ДНК. Каждь|й белок клетки кодируется специфической иРНК, поэтому число их типов в клетке соответствует числу видов белков.
  2. Рибосомная РНК (рРНК). Это одноцепочечные нуклеиновые кислоты, образующие в комплексе с белками рибосомы - орга-неллы, на которых происходит синтез белка. Рибосомные РНК синтезируются в ядре. Информация об их структуре закодирована в участках ДНК, которые расположены в области вторичной перетяжки хромосом. Рибосомные РНК составляют 80% всей РНК клетки, поскольку в клетке имеется огромное количество рибосом. Рибосомные РНК обладают сложной вторичной и третичной структурой, образуя петли на комплементарных участках, что приводит к самоорганизации этих молекул в сложное по форме тело. В состав рибосом входит три типа рРНК у прокариот и четыре типа рРНК у эукариот. 3. Транспортная (трансферная) РНК(тРНК). Молекула тРНК состоит в среднем из 80 нуклеотидов. Содержание тРНК в клетке - около 15% всей РНК. Функция тРНК - перенос аминокислот к месту синтеза белка. Число различных типов тРНК в клетке невелико (20-60). Все они имеют сходную пространственную организацию. Благодаря внутрицепочечкым водо- родным связям молекула тРНК приобретает характерную вторичную структуру, называемую клеверным листам. Трехмерная же модель тРНК выглядит несколько иначе. В тРНК выделяют четыре петли: акцепторную (служит местом присоединения аминокислоты), антикодоновую (узнает кодон в иРНК в процессе трансляции) и две боковые.

Более ста лет назад (в 1869 году) Фридрих Мишер, исследуя клетки гноя, выделил из ядер этих клеток новый тип химических соединений, которые он в совокупности назвал "нуклеином". Эти вещества, позднее получившие название нуклеиновых кислот, обладали кислотными свойствами, были необычайно богаты фосфором и содержали также углерод, кислород, водород и азот. Последующее изучение их показало, что существует два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК), которые являются составной частью сложных белков - нуклеопротеинов, содержащихся во всех клетках животных, бактерий, вирусов, растений.

Нуклеопротеины [соответственно, дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНП)] отличаются друг от друга по составу, размерам и физико-химическим свойствам. Названия нуклеопротеинов отражают только природу углеводного компонента (пентозы), входящего в состав нуклеиновых кислот. У РНП углевод представлен рибозой, у ДНП - дезоксирибозой. Название "нуклеопротеины" связано с названием ядра клетки, где они впервые и были обнаружены. Однако в настоящее время установлено, что ДНП и РНП содержатся и в других субклеточных структурах. При этом ДНП преимущественно локализованы в ядре, а РНП - в цитоплазме. В то же время ДНП открыты в митохондриях, а в ядрах и ядрышках обнаружены также высокомолекулярные РНП.

Отличия между ДНК и РНК
Показатели ДНК РНК
Местоположение ядро клетки, в составе хроматина, немного в митохондриях (0,2% от всей ДНК) во всех частях
Сахар (пентоза) Дезоксирибоза Рибоза
Азотистые основания Аденин,
Гуанин,
Цитозин,
Тимин
Аденин,
Гуанин,
Цитозин,
Урацил
Количество цепей в молекуле 99,99% - двойная спираль, 0,01% одноцепочечная 99,99% - одноцепочечная, 0,01% двухцепочечная
Форма молекулы Все одноцепочечные - кольцевые.

Большинство двухцепочечных - линейные, часть - кольцевые.

Линейные молекулы

Химический состав нуклеиновых кислот

Выделение нуклеиновых кислот из комплекса их с белками и последующий их полный гидролиз позволил определить химический состав нуклеиновых кислот. Так, при полном гидролизе в гидролизате были обнаружены пуриновые и пиримидиновые основания, углеводы (рибоза и дезоксирибоза) и фосфорная кислота.

Азотистые основания (N-основания)

В основе структуры пуриновых и пиримидиновых оснований лежат два ароматических гетероциклических соединения - пурин и пиримидин. Молекула перимидина содержит один гетероцикл. Молекула пурина состоит из двух конденсированных колец: пиримидина и имидазола.

Обрати внимание! Нумерация атомов в ароматическом кольце азотистых оснований осуществляется арабскими цифрами без штриха [ " ]. Символ [ " ] (произносится как "штрих" или "прим") показывает, что соответствующий номер нумерует атомы пентозного кольца, например 1" (см ниже).

В составе нуклеиновых кислот встречаются три главных пиримидиновых основания: цитозин (Ц), урацил (У) и тимин (Т):

и два пуриновых - аденин (А) и гуанин (Г)

Одним из важных свойств азотистых оснований (содержащих оксигруппы) является возможность их существования в двух таутомерных формах, в частности лактим- и лактамной формах, в зависимости от значения pH среды. Таутомерные превращения можно представить на примере урацила.

Оказалось, что в составе нуклеиновых кислот все оксипроизводные пуринов и пиримидинов находятся в лактамной форме.

Помимо главных оснований, в составе нуклеиновых кислот открыты редкие (минорные) азотистые основания. Минорные основания встречаются преимущественно в транспортных РНК, где их список приближается к 50, в следовых количествах в рибосомальных РНК и в составе ДНК. В транспортных РНК на долю минорных оснований приходится до 10% всех нуклеотидов, что имеет, очевидно, важный физиологический смысл (защита молекулы РНК от действия гидролитических ферментов). К минорным основаниям относятся дополнительно метилированные пуриновые и пиримидиновые основания, например, 2-метиладенин, 1-метилгуанин, 5-метилцитозин, 5-оксиметилцитозин и др.

Углеводы

Углеводы (пентозы) в нуклеиновых кислотах представлены рибозой и 2-дезоксирибозой, которые находятся в β-D-рибофуранозной форме (формулы слева).

В составе некоторых фаговых ДНК обнаружена молекула глюкозы, которая соединяется гликозидной связью с 5-оксиметилцитозином.

Конформация углеводного цикла (пентозы)

Для углеводного цикла (пентозы) нуклеиновых кислот плоская конформация, когда атомы углерода С1", С2", С3", С4" и гетероатом кислорода находятся в одной плоскости, - энергетически невыгодна. Среди многочисленных теоретически возможных конформаций этих остатков в полинуклеотидах реализуются только две: либо С2"-эндоконформации, либо С3"-эндоконформации. Эти конформации возникают при вращении вокруг связи С4", которое приводит к такому искажению кольца, при котором один из атомов пентозы (пятичленного фуранозного кольца) оказывается вне плоскости создаваемой четырьмя другими атомами. Такая конформация представляет собой эндо- или экзо- структуру, в зависимости от того располагается ли данный атом на той же стороне плоскости, что и С5" или на противоположной стороне.

Вещества, в которых азотистые основания соединены с пентозой, называются нуклеозидами (рис.2).

Нуклеозиды относятся к N-гликозидам. У них пиримидиновые азотистые основания (один гетероцикл) соединяются с пентозой гликозидной связью через N-1, пуриновые через N-9. В зависимости от типа пентозы различают два вида нуклеозидов - дезоксирибонуклеозиды, содержащие 2-дезоксирибозу, и рибонуклеозиды, содержащие рибозу.

Дезоксирибонуклеозиды входят только в ДНК, а рибонуклеозиды - только в РНК. Пиримидиновые и пуриновые нуклеозиды содержат соответствующие азотистые основания:

Кроме главных встречаются минорные нуклеозиды, в которые входят минорные азотистые основания. Больше всего минорных нуклеозидов содержится в тРНК. Наиболее распространенными минорными нуклеозидами, входящими во все тРНК, являются дигидроуридин, псевдоуридин (обозначаемый сокращенно значком Ψ) и риботимидин. В псевдоуридине отсутствует обычная N-гликозидная связь. В нем атом С-1 рибозы соединен с атомом С-5 урацила.

Вследствие стерических причин пуриновые основания в составе пуриновых нуклеотидов в ДНК могут принимать только две стерически доступные конформации относительно остатка дезоксирибозы, обозначаемые как син-конформации и анти-конформации.

В то же время пиримидиновые основания пиримидиновых нуклеотидов присутствуют в ДНК в виде анти-конформеров, что связано со стерическими несоответствиями, возникающими между углеводной частью нуклеотида и карбонильным кислородом в С-2 положении пиримидина. В силу этого пиримидиновые основания приобретают, главным образом, анти-конформацию (Nelson D.L., Cox M.M., Lehninger Principles of Biochemistry, W.H. Freeman (ed.), San Francisco, 2004).

Нуклеотиды представляют собой соединения соответствующего типа нуклеозида с фосфорной кислотой. Они также делятся на рибонуклеотиды, содержащие рибозу, и дезоксирибонуклеотиды, содержащие 2-дезоксирибозу. Название нуклеотида происходит от вида азотистого основания и количества остатков фосфорной кислоты. Если содержится один остаток фосфорной кислоты - нуклеозид монофосфат (к примеру дAMФ - дезоксиаденозин монофосфат), два остатка – нуклеозид дифосфат (к примеру дAДФ - дезоксиаденозин дифосфат), три остатка – нуклеозид трифосфат (к примеру дAТФ - дезоксиаденозин трифосфат). Остатки фосфорной кислоты присоединяются к 5"-углероду дезоксирибозы и обозначены α, β, γ.

Ниже приведено строение адениловых нуклеотидов.

Фосфат может присоединяться в разные положения кольца пентозы (в рибонуклеотидах - в положениях 2", 3", 5", в дезоксирибонуклеотидах - в положения 3", 5"). Имеющиеся в клетке свободные нуклеотиды содержат фосфатную группу в положении 5". Нуклеозид-5"-фосфаты участвуют в биологическом синтезе нуклеиновых кислот и образуются при их распаде. Поскольку нуклеозид-5"-фосфаты, или мононуклеотиды, являются производными соответствующих нуклеозидов, то различают те же главные и редкие рибомононуклеотиды и дезоксирибомононуклеотиды.

Удлинение фосфатного конца мононуклеотида за счет присоединения дополнительных фосфатов приводит к образованию нуклеозидполифосфатов. Чаще всего в клетках встречаются нуклеозиддифосфаты и нуклеозидтрифосфаты. Ниже приводятся названия и сокращенные обозначения нуклеозидфосфатов:

Все нуклеозидфосфаты находятся в клетке в виде анионов, поэтому аденозинфосфаты правильнее обозначать АМФ 2- , АДФ 3- , АТФ 4- . АДФ и АТФ являются макроэргическими, т. е. богатыми энергией, соединениями, химическая энергия которых используется организмом для различных функций. Остальные нуклеозидди- и трифосфаты также участвуют в реакциях синтеза биологических веществ.

Международные стандартные сокращения

В работах по исследованию нуклеиновых кислот употребляются схемы нумерации атомов и сокращений, рекомендованные комиссией Международного союза общей и прикладной химии (IUPAC) и Международным союзом биохимиков (IUB). Подкомиссия IUPAC-IUB выработала единые стандартные определения (IUPAC-IUB, 1983).

Сокращения и символы, используемые для обозначения оснований, нуклеозидов и нуклеотидов (Arnott S., 1970).

Основание
Название Символ Название Символ Название Символ
1. Рибонуклеозиды и рибонуклеотиды
Урацил Ura Уридин Urd или U Уридиловая кислота 5"-UMP или pU
Цитозин Cyt Цитидин Cyd или C Цитидиловая кислота 5"-CMP или pC
Аденин Ade Аденозин Ado или A Адениловая кислота 5"-AMP или pA
Гуанин Gua Гуанозин Guo или G Гуаниловая кислота 5"-GMP или pG
2. Дезоксирибонуклеозиды и дезоксирибонуклеотиды
Тимин Thy Дезокситимидин dThd или dT Дезокситимидиловая кислота 5"-dTMP или pdT
Цитозин Cyt Дезоксицитидин dCyd или dC Дезоксицитидинловая кислота 5"-dCMP или pdC
Аденин Ade Дезоксиаденозин dAdo или dA Дезоксиадениловая кислота 5"dAMP или pdA
Гуанин Gua Дезоксигуанозин dGuo или dG Дезоксигуаниловая кислота 5"dGMP или pdG
3.Полинуклетиды

Синтетические полимеры, состоящие из нуклеотидов одного и того же типа, называют гомополимерами. Обозначение, например, полиадениловая кислота - poly(A)

Синтетические полимеры с чередующейся последовательностью нуклеотидов называются гетерополимерами.

Сополимер с чередованием dA и dT - poly(дезоксиаденилат - дезокситимидилат) обозначается как poly d(A-Т) или poly(dA-dT) или (dA-dT) или d(A-T)n.

Для случайного сополимера dA, dT вместо деффиса между символами ставится запятая, например, poly d(A,T).

Образование комплементарного дуплекса обозначается точкой между символами - poly(dA) · poly(dT); тройной спирали - poly(dA)· 2poly(dT).

Олигонуклеотиды обозначаются следующим образом: например, олигонуклеотид гуанилил-3",5"-цитидилил-3",5"-уридин - GpCpU или GCU, при этом 5"-концевым нуклеотидом является G, а 3"-концевым - U.

Для комплементарно связанных олигонуклеотидов номенклатура следующая:

На рис.5. представлена принятая для нуклеотидов система нумерации атомов. Символы, обозначающие атомы сахара, отличаются от таковых для атомов оснований значком "штрих". Остов полинуклеотида описывают в направлении P -> O5" -> C5" -> C4" -> C3" -> O3" -> P.

В сахарном кольце нумерация такова: C1" -> C2" -> C3" -> C4" -> O4" ->C5".

Двум атомам водорода при атоме C5" и при атоме C2" в дезоксирибозе, а также двум свободным атомам кислорода при атомах фосфора приписываются номера 1 и 2, причем это делается следующим образом: если смотреть вдоль цепи в направлении O5"-> C5", то двигаясь по часовой стрелке, мы будем последовательно проходить атомы C4", H5"1, H5"2. Аналогично, если смотреть вдоль цепи в направлении O3" -> P - O5", то при движении по часовой стрелке мы будем последовательно проходить атомы O5", Op1, Op2.

Общая характеристика нуклеиновых кислот

Нуклеиновыми кислотами или полинуклеотидами называются высокомолекулярные вещества, состоящие из мононуклеотидов, соединенных в цепь 3",5"-фосфодиэфирными связями .

Общее содержание ДНК и РНК в клетках зависит от их функционального состояния. В сперматозоидах количество ДНК достигает 60% (в пересчете на сухую массу клеток), в большинстве клеток 1-10, а в мышцах около 0,2%. Содержание РНК, как правило, в 5-10 раз больше, чем ДНК. Соотношение РНК/ДНК в печени, поджелудочной железе, эмбриональных тканях и вообще в тканях, активно синтезирующих белок, составляет от 4 до 10. В тканях с умеренным синтезом белка соотношение колеблется от 0,3 до 2,5. Особое место занимают вирусы. У них в качестве генетического материала может быть либо ДНК (ДНК-овые вирусы), либо РНК (РНК-овые вирусы).

В клетках бактерий, не имеющих ядра (прокариоты), молекула ДНК (хромосома) находится в специальной зоне цитоплазмы - нуклеоиде. Если она связана с клеточной мембраной бактерии, то ее называют мезосомой. Фрагмент ДНК меньших размеров локализуется вне этой хромосомной зоны. Такие участки ДНК в бактериях называются плазмидами или эписомами. В клетках, имеющих ядро (эукариоты), ДНК распределена между ядром, где она входит в состав хромосом и ядрышка, и внеядерными органоидами (митохондриями и хлоропластами). Имеются наблюдения, что в очень малых количествах ДНК присутствует в микросомах.

Примерно 1-3% ДНК клетки приходится на внеядерную ДНК, а остальное сосредоточено в ядре. Значит, наследственные свойства характерны не только для ядра, но и для митохондрий и хлоропластов клеток. Необычно высоким содержанием внеядерной ДНК отличаются зрелые яйцеклетки, у которых она присутствует в многочисленных митохондриях и желточных пластинках, причем в последних является не генетическим материалом, а резервом нуклеотидов.

РНК в отличие от ДНК распределена по клетке более равномерно. Уже одно это обстоятельство говорит о том, что функция РНК более динамична и многообразна. В клетках высших организмов около 11% всей РНК находится в ядре, около 15% - в митохондриях, 50% - в рибосомах и 24% - в гиалоплазме.

Молекулярная масса ДНК зависит от степени сложности живого объекта: у бактерий она составляет 2 10 9 , у человека и животных достигает 10 11 . У бактерий ДНК находится в виде единичной гигантской молекулы, слабо связанной с белками. В других объектах ДНК окружена белками или простейшими аминами. У вирусов это простейшие основные белки или полиамины (путресцин и спермидин), которые нейтрализуют отрицательный заряд молекулы ДНК, связываясь с ее фосфатными группами. В сперматозоидах некоторых животных и рыб ДНК образует комплексы с протаминами и гистоноподобными белками. В хромосомах клеток человека и других высших организмов ДНК связана с гистонами и негистоновыми белками. Такие комплексы белка с ДНК называют дезоксирибонуклеопротеидами (ДНП).

РНК имеет значительно меньшую молекулярную массу, чем ДНК. В зависимости от выполняемой функции, молекулярной массы и состава нуклеотидов выделяют следующие главные типы РНК: информационная, или матричная (мРНК), транспортная (тРНК) и рибосомальная (рРНК). Разные рРНК различаются по молекулярной массе (табл. 13). Кроме трех главных типов есть минорные, или редкие, РНК, содержание которых в клетке незначительно, и функции их только изучаются.

Большинство типов РНК связано в клетке с различными белками. Такие комплексы называются рибонуклеопротеидами (РНП). Характеристика нуклеиновых кислот суммирована в табл. 1.

Таблица 1. Краткая характеристика нуклеиновых кислот клеток высших организмов
Тип нуклеиновой кислоты Молекулярная масса Константа седиментации (в единицах Сведберга-S) Содержание в клетке, % Локализация в клетке Функция
ДНК 10 11 - 97-99% от всей ДНК

1-3% от всей ДНК

Ядро

Митохондрии

Хранение генетической информации и участие в передаче ее родительской ДНК при делении клетки или в передаче РНК в процессе жизнедеятельности
мРНК 4 10 4 - 1,2 10 6 6-25 25% от всей РНК Ядро, цитоплазма Является копией участка ДНК, содержащего информацию о структуре полипептидной цепи белка. Переносит информацию от ДНК к месту синтеза белка - к рибосомам
тРНК 2,5 10 4 ~4 15% от всей РНК Гиалоплазма, рибосомы, митохондрии Участвует в активировании аминокислот, их транспорте к рибосомам и сборке из аминокислот полипептидов на рибосомах
рРНК 0,7 10 6 18 80% от всей РНК Рибосомы цитоплазмы Образует скелет рибосом цитоплазмы (или митохондрий), который окутывается белками рибосом. Играет вспомогательную роль при сборке белка на рибосомах
0,6 10 6 16 Рибосомы митохондрий
~4 10 4 5 Все рибосомы
Хромосомная векторная РНК 10 4 3 Следы Хромосомы ядер Узнавание и активирование генов ДНК
Низкомолекулярные ядерные РНК 2,5 10 4 -5 10 4 4-8 Доли процента Ядра, РНП частицы цитоплазмы Активирование генов ДНК, формирование скелета белковых частиц, переносящих тРНК из ядра в цитоплазму

Физико-химические свойства нуклеиновых кислот

Физико-химические свойства нуклеиновых кислот определяются высокой молекулярной массой и уровнем структурной организации. Для нуклеиновых кислот характерны: коллоидные и осмотические свойства, высокая вязкость и плотность растворов, оптические свойства, способность к денатурации.

Коллоидные свойства типичны для всех высокомолекулярных соединений. При растворении нуклеиновые кислоты набухают и образуют вязкие растворы типа коллоидов. Гидрофильность их зависит в основном от фосфатов. В растворе молекулы нуклеиновых кислот имеют вид полианиона с резко выраженными кислотными свойствами. При физиологических значениях pH все нуклеиновые кислоты являются полианионами и окружены противоионами из белков и неорганических катионов. Растворимость двуспиральных нуклеиновых кислот хуже, чем односпиральных.

Денатурация и ренатурация. Денатурация - свойство, присущее тем макромолекулам, которые имеют пространственную организацию. Денатурация вызывается нагреванием, воздействием химических веществ, которые разрывают водородные и ван-дер-ваальсовы связи, стабилизирующие вторичную и третичную структуру нуклеиновых кислот. Например, нагревание ДНК приводит к разделению двойной спирали на одиночные цепи, т. е. наблюдается переход "спираль - клубок". При медленном охлаждении цепи вновь воссоединяются по принципу комплементарности. Образуется нативная двойная спираль ДНК. Это явление называется ренатурацией. При быстром охлаждении ренатурация не происходит.

Характерно изменение оптической активности нуклеиновых кислот, сопровождающее их денатурацию и ренатурацию. Спиральные (организованные) участки нуклеиновых кислот вращают плоскость поляризованного света, т. е. оптически активны, а разрушение спиральных участков сводит на нет оптическую активность нуклеиновых кислот.

Все нуклеиновые кислоты имеют максимум оптической плотности при длине волны около 260 нм, что соответствует максимуму поглощения азотистых оснований. Однако интенсивность поглощения природной нуклеиновой кислоты значительно ниже, чем смеси ее же нуклеотидов, полученных, например, при гидролизе этой нуклеиновой кислоты, или одиночных цепей. Причиной является структурная организация ДНК и РНК, которая вызывает классический эффект - снижение оптической плотности. Это явление получило название гипохромного эффекта. Он максимально выражен у нуклеиновых кислот, имеющих спиральные структуры (например, у ДНК) и содержащих много ГЦ-пар (ГЦ-пары имеют три водородные связи, и поэтому их труднее разорвать).

Молекулярная гибридизация нуклеиновых кислот. На способности нуклеиновых кислот ренатурировать после денатурации основан чрезвычайно важный метод определения степени гомологичности, или родственности, нуклеиновых кислот. Его называют молекулярной гибридизацией. В его основе лежит комплементарное спаривание одноцепочечных участков нуклеиновых кислот.

Этот метод позволил обнаружить особенности первичной структуры ДНК. Оказывается, в ДНК животных имеются многократно (до 100 000 раз) повторяющиеся участки с одинаковой последовательностью нуклеотидов. Они составляют до 10-20% всей ДНК. Их гибридизация идет очень быстро. Остальная часть ДНК представлена уникальными последовательностями, которые не дублируются. Эти участки ДНК гибридизуются очень медленно. Вероятность их совпадения у разных организмов невелика. С помощью метода молекулярной гибридизации можно установить гомологичность ДНК организма одного вида ДНК другого вида или гомологичность РНК участкам ДНК.

Нуклеиновые кислоты и систематика организмов

Нуклеиновые кислоты являются материальным носителем наследственной информации и определяют видоспецифичность организма, сложившуюся в ходе эволюции. Изучение особенностей нуклеотидного состава ДНК разных организмов позволило перейти от систематики по внешним признакам к систематике генетической. Это направление в молекулярной биологии получило название геносистематики. Основателем его был выдающийся советский биохимик А. Н. Белозерский.

Сравнение нуклеотидного состава ДНК разных организмов привело к интересным выводам. Оказалось, что коэффициент специфичности ДНК, т. е. отношение Г + Ц к А + Т, сильно варьирует у микроорганизмов и довольно постоянен у высших растений и животных. У микроорганизмов наблюдаются колебания изменчивости от крайнего ГЦ-типа до выраженного АТ-типа. ДНК высших организмов стойко сохраняет АТ-тип. Может создаться впечатление, что у высших организмов теряется специфичность ДНК. На самом деле у них она так же специфична, как и у бактерий, но ее специфичность определяется не столько изменчивостью состава нуклеотидов, сколько последовательностью чередования их вдоль цепи. Интересные выводы на основании нуклеотидного состава ДНК были сделаны А. Н. Белозерским и его учениками относительно происхождения многоклеточных животных и высших растений. Их ДНК АТ-типа ближе всего к ДНК грибов, поэтому свою родословную животные и грибы, очевидно, ведут от общего предка - крайне примитивных грибообразных организмов.

Еще большую информацию о родстве организмов дает метод молекулярной гибридизации. С помощью этого метода была установлена высокая гомологичность ДНК человека и обезьяны. Причем по составу ДНК человека всего на 2-3% отличается от ДНК шимпанзе, чуть больше - от ДНК гориллы, более чем на 10% - от ДНК остальных обезьян, а от ДНК бактерии - почти на 100%. Особенности первичной структуры ДНК тоже можно использовать в систематике. Гомология по участкам повторяющихся последовательностей (быстрая гибридизация) используется для макросистематики, а для уникальных фрагментов ДНК (медленная гибридизация) - для микросистематики (на уровне видов и родов). Ученые считают, что постепенно по ДНК можно будет построить все родословное древо живого мира.