Комплексные соединения. Номенклатура комплексных соединений Строение комплексных солей

При рассмотрении видов химической связи отмечалось, что силы притяжения возникают не только между атомами, но и между молекулами и ионами. Такое взаимодействие может приводить к образованию новых более сложных комплексных (или координационных) соединений.

Комплексными называют соединения, имеющие в узлах кристаллической решетки агрегаты атомов (комплексы), способные к самостоятельному существованию в растворе и обладающие свойствами, отличными от свойств составляющих их частиц (атомов, ионов или молекул).

В молекуле комплексного соединения (например, K 4 ) различают следующие структурные элементы: ион-комплексообразователь (для данного комплекса Fe), координированные вокруг него присоединенные частицы – лиганды или адденды (CN -), составляющие вместе с комплексообразователем внутреннюю координационную сферу ( 4-), и остальные частицы, входящие во внешнюю координационную сферу (K +). При растворении комплексных соединений лиганды остаются в прочной связи с ионом-комплексообразователем, образуя почти не диссоциирующий комплексный ион. Число лигандов называется координационным числом (в случае K 4 координационное число равно 6). Координационное число определяется природой центрального атома и лигандов, а также соответствует наиболее симметричной геометрической конфигурации: 2 (линейная), 4 (тетраэдрическая или квадратная) и 6 (октаэдрическая конфигурация).

Характерными комплексообразователями являются катионы: Fe 2+ ,Fe 3+ ,Co 3+ ,Co 2+ ,Cu 2+ ,Ag + ,Cr 3+ ,Ni 2+ .Способность к образованию комплексных соединений связана с электронным строением атомов. Особенно легко образуют комп­лексные ионы элементы d-семейства, например: Ag + , Au + , Cu 2+ , Hg 2+ , Zn 2+ , Fe 2+ , Cd 2+ , Fe 3+ , Co 3+ , Ni 2+ , Pt 2+ , Pt 4+ и др. Комплексообразователями могут быть А1 3+ и некоторые неметаллы, например, Si и В.

Лигандами могут служить как заряженные ионы: F - , ОН - ,NO 3 - ,NO 2 - ,Cl - , Вг - ,I - ,CO 3 2- ,CrO 4 2- ,S 2 O 3 2- ,CN - ,PO 4 3- и др., так и электронейтральные полярные молекулы:NH 3 , Н 2 О, РН 3 , СО и др. Если все лиганды у комплексообразователя одинаковы, то ком­плексноесоединение однородное , например Cl 2 ; если ли­ганды разные, то соединениенеоднородное , например Cl. Между комплексообразователем и лигандами обычно устанав­ливаются координационные (донорно-акцепторные) связи. Они об­разуются в результате перекрывания заполненных электронами орбиталей лигандов вакантными орбиталями центрального атома. В комплексных соединениях донором является комплексообразователь, акцептором – лиганд.

Количество химических связей между комплексообразователем и лигандами определяет координационное число комплексообразователя. Характерные координационные числа:Cu + ,Ag + ,Au + = 2;Cu 2+ ,Hg 2+ ,Pb 2+ ,Pt 2+ , Pd 2+ =4;Ni 2+ ,Ni 3+ ,Co 3+ ,А1 3+ = 4 или 6; Fe 2+ , Fe 3+ , Pt 4+ , Pd 4+ , Ti 4+ , Pb 4+ , Si 4+ =6.

Заряд комплексообразователя равен алгебраической сумме зарядов составляющих его ионов, например: 4- , x + 6(-1) = 4-; x = 2.

Входящие в состав комплексного иона нейтральные молекулы не оказывают влияния на заряд. Если вся внутренняя сфера заполнена только нейтральными молекулами, то заряд иона равен заряду комплексообразователя. Так, у иона 2+ заряд меди х = 2+. Заряд комплексного иона равен зарядам ионов, находящихся во внешней сфере. В K 4 заряд равен -4, так как во внешней сфере находятся 4 катиона К + , а молекула в целом электронейтральна.

Лиганды во внутренней сфере могут замещать друг друга при сохранении одного и того же координационного числа.

Классификация и номенклатура комплексных соединений. С точки зрения заряда комплексной частицы все комплексные со­единения можно разделить на катионные, анионные и нейтральные.

Катионные комплексы образуют катионы металлов, координирую­щие вокруг себя нейтральные или анионные лиганды, причем суммар­ный заряд лигандов меньше по абсолютной величине, чем степень окисления комплексообразователя, например Cl 3 . Катионные комплексные со­единения помимо гидроксокомплексов и солей, могут быть кислотами, напримерH – гексафторсурьмяная кислота.

В анионных комплексах , напро­тив, лигандов-анионов такое число, что суммарный заряд комплексно­го аниона отрицателен, например . Ванионных комплексах в качестве лигандов выступают гидроксид-анионы – это гидроксокомплексы (например Na 2 – тетрагидроксоцинкат калия), или анионы кислотных остатков – этоацидокомплексы (напримерK 3 – гексацианоферрат (III) калия).

Нейтральные комплексы могут быть нескольких видов: комплекс нейтрального атома металла с нейтральными лигандами (напримерNi(CO) 4 – тетракарбонил никеля, [Сr(С 6 Н 6) 2 ] – дибензолхром). В нейтральных комплексах другого ви­да заряды комплексообразователя и лигандов уравновешивают друг друга (например, – хлорид гексаамминплатины (IV), – тринитротриамминкобальт).

Классифицировать комплексные соединения можно по природе лиганда. Среди соединений с нейтральными лигандами различают аквакомплексы, аммиакаты, карбонилы металлов. Ком­плексные соединения, содержащие в качестве лигандов молекулы во­ды, называютаквакомплексами . При кристаллизации вещества из раствора катион захватывает часть молекул воды, которые попадают в кристаллическую решетку соли. Та­кие вещества называютсякристаллогидратами, например А1С1 3 · 6Н 2 О. Большинство кристаллогидратов представляет собой аквакомплексы, поэтому их точнее изображать в виде комплексной соли ([А1(Н 2 О) 6 ]С1 3 – хлорид гексаакваалюминия). Комплексные соединения с молекулами аммиака в качестве лиганда называют аммиакатами , например C1 4 – хлорид гексаамминплатины (IV).Карбонилами металлов называют комплексные соединения, в ко­торых лигандами служат молекулы оксида углерода (II), например, – пентакарбонил железа, – тетракарбонил никеля.

Известны комплексные соединения с двумя комплексными ионами в молекуле, для которых существует явление координационной изомерии, которая связана с разным распределением лигандов между комплексообразователями, например: – гексанитрокобальтат (III) гексаамминникеля (III).

При составлении названия комплексного соединения применяются следующие правила:

1) если соединение является комплексной солью, то первым называется анион в именительном падеже, а затем катион в родительном падеже;

2) при названии комплексного иона сначала указываются лиганды, затем комплексообразователь;

3) молекулярные лиганды соответствуют названиям молекул (кроме воды и аммиака, для их обозначения применяются терми­ны «аква» и«амин» );

4) к анионным лигандам добавляют окончание – о, например: F - – фторо, С1 - – хлоро, О 2 - – оксо,CNS - – родано,NO 3 - – нитрато,CN - – циано,SO 4 2- – сульфато,S 2 O 3 2- – тиосульфато, СО 3 2- – карбонато, РО 4 3- – фосфато, ОН - – гидроксо;

5) для обозначения количества лигандов используются гречес­кие числительные: 2 – ди-, 3 –три-, 4 –тетра-, 5 –пента-, 6 –гекса-;

6) если комплексный ион – катион, то для названия комплексообразователя используют русское наименование элемента, если анион – латинское;

7) после названия комплексообразователя рим­ской цифрой в круглых скобках указывают его степень окисления;

8) у нейтральных комплексов название центрального атома дается в именительном падеже, а его степень окисления не указывается.

Свойства комплексных соединений. Химические реакции с участием комплексных соединений разделяют на два типа:

1) внешнесферные – при их протекании комплексная частица остается неизменной (реакции обмена);

2) внутрисферные – при их протекании происходят изменения в степени окисления центрального атома, в строении лигандов или изменения в координационной сфере (уменьшение или увеличение координационного числа).

Одним из важнейших свойств комплексных соединений является их диссоциация в водных растворах. Большинство растворимых в воде ионных комплексов – сильные электролиты , они диссоциируют на внешнюю и внутреннюю сферы:K 4 ↔ 4K + + 4 - .

Комплексные ионы достаточно устойчивы, они являются слабыми электролитами , ступенчато отщепляя в водный раствор лиганды:

4 - ↔ 3- +CN - (число ступе­ней равно числу лигандов).

Если суммар­ный заряд частицы комплексного соединения равен нулю, то имеем молекулу неэлектролита, например .

При обменных реакциях комплексные ионы переходят из од­них соединений в другие, не изменяя своего состава. Электролитическая диссоциация комплексных ионов подчиня­ется закону действующих масс и количественно характеризуется константой диссоциации, которая носит название константы нестой­кости К н. Чем меньше константа нестойкости комплекса, тем в меньшей сте­пени он распадается на ионы, тем устойчивее это соединение. У соединений, характеризуемых высокой К н, комплексные ионы неустойчивы, т. е. их практически нет в раство­ре, такие соединения являютсядвойными солями . Отличие между типичными представителями комплексных и двойных солейзаключается в том, что последние диссоци-ируют с образованием всех ионов, которые входят в состав этой соли, например:KA1(SO 4) 2 ↔ К + + А1 3+ + 2SO 4 2- (двойная соль);

К ↔ 4К + + 4- (комплексная соль).

Комплексные соединения.

Все неорганические соединœения делятся на две группы:

1. соединœения первого порядка, ᴛ.ᴇ. соединœения подчиняющиеся теории валентности;

2. соединœения высшего порядка, ᴛ.ᴇ. соединœения, не подчиняющиеся понятиям теории валентности. К соединœениям высшего порядка относятся гидраты, аммиакаты и т.д.

CoCl 3 + 6 NH 3 = Co(NH 3) 6 Cl 3

Вернер (Швейцария) ввел в химию представления о соединœениях высшего порядка и дал им название комплексные соединœения . К КС он отнес всœе наиболее устойчивые соединœения высшего порядка, которые в водном растворе либо вообще не распадаются на составные части, либо распадаются в незначительной степени. В 1893 г Вернер предположил, что любой элемент после насыщения способен проявлять еще и дополнительную валентность – координационную . По координационной теории Вернера, в каждом КС различают:

Cl 3: комплексообразователь (КО = Со), лиганды (NH 3), координационное число (КЧ = 6), внутреннюю сферу , внешнюю среду (Cl 3), координационную емкость.

Центральный атом внутренней сферы, вокруг которого группируются ионы или молекулы, принято называть комплексообразователœем. Роль комплексообразователœей чаще всœего выполняют ионы металлов, реже нейтральные атомы или анионы. Ионы или молекулы, координирующиеся вокруг центрального атома во внутренней сфере, называются лигандами . Лигандами бывают анионы: Г - , ОН-, СN-, CNS-, NO 2 - ,CO 3 2- , C 2 O 4 2- , нейтральные молекулы: Н 2 О, СО, Г 2 , NH 3 , N 2 H 4 . Координационное число – число мест во внутренней сфере комплекса, которые бывают заняты лигандами. КЧ обычно выше степени окисления. КЧ = 1, 2, 3, 4, 5, 6, 7, 8, 9, 12. Чаще всœего встречаются КЧ = 4, 6, 2. Эти числа соответствуют наиболее симметричной конфигурации комплекса – октаэдрической (6), тетраэдрической (4) и линœейной (2). КЧ зависти от природы комплексообразователя и лигандов, а также от размеров КО и лигандов. Координационная емкость лигандов – число мест во внутренней сфере комплекса, занимаемых каждым лигандом. Для большинства лигандов координационная емкость равна единице (монодентатныелиганды ), реже двум (бидентатныелиганды ), существуют лиганды с большей емкостью (3, 4 ,6) – полидентатныелиганды . Заряд комплекса численно должен быть численно равен суммарному внешней сферы и противоположен ему по знаку. 3+ Cl 3 - .

Номенклатура комплексных соединœений. Многие комплексные соединœения сохранили свои исторические названия, связанные с цветом или с именем ученого их синтезирующего. Сегодня применяется номенклатура ИЮПАК.

Порядок перечисления ионов . Первым принято называть анион, затем катион, при этом в названии аниона употребляется корень латинского наименования КО, а в названии катиона – его русское название в родительном падеже.

Cl – хлорид диамминсеребра; K 2 – трихлорокупрат калия.

Порядок перечисления лигандов . Лиганды в комплексе перечисляются в следующем порядке: анионные, нейтральные, катионные – без разделœения дефисом. Анионы перечисляются в порядке H - , O 2- , OH - , простые анионы, сложные анионы, полиатомные анионы, органические анионы.

SO 4 – сульфат хлоронитродиамминэтилендиаминплатины (+4)

Окончание координационных групп. Нейтральные группы называются также, как и молекулы. Исключением являются аква (Н 2 О), амин (NH 3). К отрицательно заряженным анионам прибавляют гласную ʼʼОʼʼ

– гексоцианоферрат (+3) гексааминакобальта (+3)

Приставки, указывающие число лигандов.

1 – моно, 2 – ди, 3 – три, 4 – тетра, 5 – пента͵ 6 – гекса, 7 – гепта͵ 8 – окта͵ 9 – нона, 10 – дека, 11 – индека, 12 – додека, много – поли.

Приставки бис-, трис- используются перед лигандами со сложными названиями, где уже имеются приставки моно-, ди- и т.д.

Cl 3 – хлорид трис(этилендиамин)желœеза (+3)

В названиях комплексных соединœений вначале указывается анионная часть в именительном падеже и с суффиксом -ат, а затем катионная часть в родительном падеже. При этом, перед названием центрального атома как в анионной, так и в катионной части соединœения перечисляются всœе координированные вокруг него лиганды с указанием их числа греческими числительными (1 - моно (обычно опускается), 2 - ди, 3 - три, 4 - тетра, 5 - пента͵ 6 - гекса, 7 - гепта͵ 8 - окта). К названиям лигандов добавляют суффикс -о, причем вначале называют анионы, а затем нейтральные молекулы: Сl- - хлоро, CN- - циано, ОН- - гидроксо, С2О42- - оксалато, S2O32- - тиосульфато, (СН3)2NH - диметиламино и т.д. Исключения: названия Н2О и NH3 в качестве лигандов следующие: ʼʼакваʼʼ и ʼʼамминʼʼ. В случае если центральный атом входит в состав катиона, то используют русское название элемента͵ после которого в скобках римскими цифрами указывают его степень окисления. Для центрального атома в составе аниона употребляется латинское название элемента и степень окисления указывается перед этим названием. Для элементов с постоянной степенью окисления ее можно опускать. В случае неэлектролитов степень окисления центрального атома также не указывают, так как она определяется, исходя из электронейтральности комплекса. Примеры названий:

Cl2 - хлорид дихлоро-тетраммин-платины(IV),

OH - гидроксид диаммин-серебра(I).

Классификация комплексных соединœений. Применяется несколько различных классификаций КС.

1. по принадлежности к определœенному классу соединœений :

комплексные кислоты – Н 2

комплексные основания –

комплексные соли – K 2

2. По природе лигандов : аквакомплексы, аммиакаты. Цианидные, галогенидные и т.д.

Аквакомплексы - комплексы, в которых лигандами служат молекулы воды, к примеру Cl 2 - хлорид гексааквакальция. Аммиакаты и аминаты - комплексы, в которых лигандами являются молекулы аммиака и органических аминов, к примеру: SO 4 - сульфат тетрамминмеди(II). Гидроксокомплексы. В них лигандами служат ионы ОН-. Особенно характерны для амфотерных металлов. Пример: Na 2 - тетрагадроксоцинкат(II) натрия. Ацидокомплексы. В этих комплексах лигандами являются анионы-кислотные остатки, к примеру K 4 - гексацианоферрат(II) калия.

3. по знаку заряда комплекса : катионные, анионные, нейтральные

4. по внутренней структуре КС : по числу ядер, составляющих комплекс :

моноядерные - Н 2 , двухядерные – Cl 5 и т.д.,

5. по отсутствию или наличию циклов: простые и циклические КС.

Циклические или хелатные (клешневидные) комплексы. Οʜᴎ содержат би- или полидентатныйлиганд, который как бы захватывает центральный атом М подобно клешням рака:Примеры: Na 3 - триоксалато-(III)феррат натрия, (NO 3) 4 - нитрат триэтилендиамино-платины(IV).

К группе хелатных комплексов относятся и внутрикомплексные соединœения, в которых центральный атом входит в состав цикла, образуя связи с лигандами разными способами: по обменному и донорно-акцепторному механизмам. Такие комплексы очень характерны для аминокарбоновых кислот, к примеру, глицин образует хелаты с ионами Cu 2+ , Pt 2+ :

Хелатные соединœения отличаются особой прочностью, так как центральный атом в них как бы блокирован циклическим лигандом. Наибольшей устойчивостью обладают хелаты с пяти- и шестичленными циклами. Комплексоны настолько прочно связывают катионы металлов, что при их добавлении растворяются такие плохо растворимые вещества, как CaSO 4 , BaSO 4 , CaC 2 O 4 , CaCO 3 . По этой причине их применяют для умягчения воды, для связывания ионов металлов при крашении, обработке фотоматериалов, в аналитической химии. Многие комплексы хелатного типа имеют специфическую окраску и в связи с этим соответствующие соединœения-лиганды являются очень чувствительными реагентами на катионы переходных металлов. К примеру, диметилглиоксим [С(СН 3)NOH] 2 служит прекрасным реактивом на катионы Ni2+, Pd2+, Pt2+, Fe2+ и др.

Устойчивость комплексных соединœений. Константа нестойкости. При растворении КС в воде происходит распад, причем внутренняя сфера ведет себя как единое целое.

K = K + + -

Наряду с этим процессом в незначительной степени происходит диссоциация внутренней сферы комплекса:

Ag + + 2CN -

Для характеристики устойчивости КС вводится константа нестойкости , равная:

Константа нестойкости – мера прочности КС. Чем меньше К нест, тем более прочно КС.

Изомерия комплексных соединœений. Для комплексных соединœений изомерия очень распространена и различают:

1. сольватная изомерия обнаруживается в изомерах, когда распределœение молекул воды между внутренней и внешней сферами оказывается неодинаковой.

Cl 3 Cl 2 H 2 O Cl(H 2 O) 2

Фиолетовый светло-зелœеный темно-зелœеный

2. Ионизационная изомерия связана с различной легкостью диссоциации ионов из внутренней и внешней сферы комплекса.

4 Cl 2 ]Br 2 4 Br 2 ]Cl 2

SO 4 и Br - сульфатбромо-пентаммин-кобальта(III) ибромидсульфато-пентаммин-кобальта(III).

Clи NO 2 - хлориднитро-хлоро-диэтилендиамино-кобальта(III) инитритдихлоро-диэтилендиамино-кобальта(III).

3. Координационная изомерия встречается только у бикомплексных соединœений

[Со(NH 3) 6 ] [Со(CN) 6 ]

Координационная изомерия встречается в тех комплексных соединœениях, где и катион и анион являются комплексными.

К примеру, - тетрахлоро-(II)платинат тетраммин-хрома(II) и - тетрахлоро-(II)хромат тетраммин-платины(II) являются координационными изомерами

4. Изомерия связи возникает только тогда, когда монодентатныелиганды могут координироваться через два разных атома.

5. Пространственная изомерия обусловлена тем, что одинаковые лиганды располагаются вокруг КО либо рядом (цис ), либо напротив (транс ).

Цис-изомер (оранжевые кристаллы) транс-изомер (желтые кристаллы)

Изомеры дихлоро-диаммин-платины

При тетраэдрическом расположении лигандовцис-транс-изомерия невозможна.

6. Зеркальная (оптическая) изомерия , к примеру в катионе дихлоро-диэтилендиамино-хрома(III) + :

Как и в случае органических веществ, зеркальные изомеры имеют одинаковые физические и химические свойства и различаются ассиметрией кристаллов, направлением вращения плоскости поляризации света.

7. Изомерия лигандов , к примеру, для (NH 2) 2 (CH 2) 4 возможны следующие изомеры: (NH 2)-(CH 2) 4 -NH 2 , CH 3 -NH-CH 2 -CH 2 -NH-CH 3 , NH 2 -CH(CH 3) -CH 2 -CH 2 -NH 2

Проблема связи в комплексных соединœениях. Характер связи в КС различен и для объяснения в настоящее время используют три подхода: метод ВС, метод МО и метод теории кристаллического поля.

Метод ВС ввел Полинᴦ. Основные положения метода:

1. Связь в КС образуется в результате донорно-акцепторного взаимодействия. Лиганды предоставляют электронные пары, а комплексообразователь – свободные орбитали. Мера прочности связи – степень перекрывания орбиталей.

2. Орбитали КО подвергаются гибридизации, тип гибридизации определяется числом, природой и электронной структурой лигандов. Гибридизация КО определяется геометрию комплекса.

3. Дополнительное упрочнение комплекса происходит за счёт того, что наряду с s-связью образуется p связывание.

4. Магнитные свойства комплекса определяются числом неспаренных электронов.

5. При образовании комплекса распределœение электронов на орбиталях может оставаться как у нейтральных атомов, так и претерпевать изменения. Это зависит от природы лигандов, его электростатического поля. Разработан спектрохимический ряд лигандов. В случае если лиганды обладают сильным полем, то они смещают электроны, вызываю их спаривание и образование новой связи.

Спектрохимический ряд лигандов:

CN - >NO 2 - >NH 3 >CNS - >H 2 O>F - >OH - >Cl - >Br -

6. Метод ВС дает возможность объяснить образование связи даже в нейтральных и класстерных комплексах

K 3 K 3

1. У первого КС лиганды создают сильное поле, у второго – слабое

2. Нарисовать валентные орбитали желœеза:

3. Рассмотреть донорные свойства лигандов: CN - имеют свободные электронные орбитали и бывают донорами электронных пар.
Размещено на реф.рф
CN - обладает сильным полем, действует на 3dорбитали, уплотняя их.

В результате образуются 6 связей, при этом в связи участвуют внутренние 3 dорбитали, ᴛ.ᴇ. образуется внутриорбитальный комплекс. Комплекс является парамагнитным и низкоспиновым, т.к. есть один неспаренный электрон. Комплекс устойчивый, т.к. заняты внутренние орбитали.

Ионы F - имеют свободные электронные орбитали и бывают донорами электронных пар, обладают слабым полем, в связи с этим не может уплотнить электроны на 3d уровне.

В результате образуется парамагнитный, высокоспиновой, внешнеорбитальный комплекс. Малоустойчивый и реакционноспособный.

Достоинства метода ВС : информативность

Недостатки метода ВС : метод пригоден для определœенного круга веществ, метод не объясняет оптических свойств (окраска), не делает энергетической оценке, т.к. в некоторых случаях образуется квадратичный комплекс вместо более энергетически выгодного тетраэдрического.

Комплексные соединения. - понятие и виды. Классификация и особенности категории "Комплексные соединения." 2017, 2018.

Соединения типа ВF 3 , СН 4 , NН 3 , Н 2 О, СО 2 и др., в которых элемент проявляет свою обычную максимальную валентность, называются валентно-насыщенными соединениями или соединениями первого порядка . При взаимодействии соединений первого порядка друг с другом образуются соединения высшего порядка. К соединениям высшего порядка относятся гидраты, аммиакаты, продукты присоединения кислот, органических молекул, двойные соли и многие др. Примеры образования комплексных соединений:

PtCl 4 + 2KCl = PtCl 4 ∙2KCl или K 2

CoCl 3 + 6NH 3 = CoCl 3 ∙6NH 3 или Cl 3 .

А. Вернер ввел в химию представления о соединениях высшего порядка и дал первое определение понятию комплексного соединения. Элементы после насыщения обычных валентностей способны проявлять еще и дополнительную валентность – координационную . Именно за счет координационной валентности и происходит образование соединений высшего порядка.

Комплексные соединения сложные вещества, в которых мож­но выделить центральный атом (комплексообразователь) и связанные с ним молекулы и ионы – лиганды.

Центральный атом и лиганды образуют комплекс (внутреннюю сферу), который при записи формулы комплексного соединения заключают в квадратные скоб­ки. Число лигандов во внутренней сфере называется координацион­ным числом. Молекулы и ионы, окружающие комплекс, образуют внешнюю сферу. Пример комплексной соли гексацианоферрат (III) калия К 3 (так называемая красная кровяная соль).

Центральными атомами могут быть ионы переходных металлов или атомы некоторых неметаллов (Р, Si). Лигандами могут служить анионы галогенов (F – , Cl – , Br – , I –), ОН – , СN – , СNS – , NO 2 – и др., нейтральные молекулы Н 2 О, NH 3 , СО, NO, F 2 , Cl 2 , Br 2 , I 2 , гидразин N 2 H 4 , этилендиамин NH 2 –CH 2 –CH 2 –NH 2 и др.

Координационная валентность (КВ) или координационное число – число мест во внутренней сфере комплекса, которые могут быть заняты лигандами . Координационное число обычно больше степени окисления комплексообразователя, зависит от природы комплексообразователя и лигандов. Чаще встречаются комплексные соединения с координационной валентностью 4, 6 и 2.

Координационная емкость лиганда число мест во внутренней сфере комплекса, занимаемых каждым лигандом. Для большинства лигандов координационная емкость равна единице, реже 2 (гидразин, этилендиамин) и более (ЭДТА - этилендиамминтетраацетат).

Заряд комплекса должен быть численно равен суммарному заряду внешней сферы и противоположным ему по знаку, но существуют и нейтральные комплексы. Степень окисления комплексообразователя равна и противоположна по знаку алгебраической сумме зарядов всех остальных ионов.

Систематические названия комплексных соединений формируются следующим образом: вначале называется в именительном падеже анион, затем раздельно в родительном падеже – катион. Лиганды в комплексе перечисляются слитно в следующем порядке: а) анионные; б) нейтральные; в) катионные. Анионы перечисляются в порядке H – , О 2– , ОН – , простые анионы, полиатомные анионы, органически анионы – в алфавитном порядке. Нейтральные лиганды называются так же, как молекулы, за исключением Н 2 О (аква) и NH 3 (аммин); к отрицательно заряженным ионам прибавляют соединительную гласную «о ». Число лигандов указывают приставками: ди-, три, тетра-, пента-, гекса- и т.д. Окончанием для анионных комплексов является «-ат » или «‑овая », если называется кислота; для катионных и нейтральных комплексов типичных окончаний нет.

H – тетрахлороаурат (III) водорода

(ОН) 2 – гидроксид тетраамминмеди (II)

Cl 4 – хлорид гексаамминплатина (IV)

– тетракарбонилникель

– гексацианоферрат (III) гексаамминкобальта (III)

Классификация комплексных соединений основана на различных принципах:

По принадлежности к определенному классу соединений :

- комплексные кислоты – H 2 , H 2 ;

- комплексные основания – (ОН) 2 ;

- комплексные соли – Li 3 , Cl 2 .

По природе лигандов:

- аквакомплексы (лигандами выступает вода) – SO 4 ∙H 2 O, [Со(Н 2 О) 6 ]Сl 2 ;

- аммиакаты (комплексы, лигандами в которых служат молекулы аммиака) – [Сu(NH 3) 4 ]SO 4 , Cl;

- ацидокомплексы (оксалатные, карбонатные, цианидные, галогенидные комплексы, содержащие в качестве лигандов анионы различных кислот) – K 2 , K 4 ;

- гидроксокомплексы (соединения с ОН-группами в виде лигандов) – К 3 [Аl(ОН) 6 ];

- хелатные или циклические комплексы (би- или полидентатный лиганд и центральный атом образуют цикл) – комплексы с аминоуксусной кислотой, ЭДТА; к хелатам относят хлорофилл (комплексообразователь – магний) и гемоглобин (комплексообразователь – железо).

По знаку заряда комплекса : катионные, анионные, нейтральные комплексы.

Особую группу составляют сверхкомплексные соединения. В них число лигандов превышает координационную валентность комплексообразователя. Так, в соединении CuSO 4 ∙5Н 2 О у меди координационная валентность равна четырем и во внутренней сфере координированы четыре молекулы воды, пятая молекула присоединяется к комплексу при помощи водородных связей: SO 4 ∙Н 2 О.

Лиганды связаны с центральным атомом донорно-акцепторной связью. В водном растворе комплексные соеди­нения могут диссоциировать с образованием комплексных ионов:

Cl ↔ + + Cl –

В незначительной степени, происходит диссоциация и внутренней сферы комплекса:

+ ↔ Ag + + 2NH 3

Мерой прочности комплекса есть константа нестойкости комплекса :

К нест + = C Ag + ∙ C2 NH 3 / C Ag(NH 3) 2 ] +

Вместо константы неустойчивости иногда пользуются обратной величиной, называемой константой устойчивости:

К уст = 1 / К нест

В умеренно разбавленных растворах многих комплексных солей существуют как комплексные, так и простые ионы. Дальнейшее разбавление может приводить к полному распаду комплексных ионов.

По простой электростатической модели В.Косселя и А.Магнуса, взаимодействие между комплексообразователем и ионными (или полярными) лигандами подчиняется закону Кулона. Устойчивый комплекс получается когда силы притяжения к ядру комплекса уравновешивают силы отталкивания между лигандами. Прочность комплекса увеличивается с ростом заряда ядра и уменьшением радиуса комплексообразователя и лигандов. Электростатическая модель очень наглядна, однако не в состоянии объяснить существование комплексов с неполярными лигандами и комплексообразователем в нулевой степени окисления; чем обусловлены магнитные и оптические свойства соединений.

Наглядным способом описания комплексных соединений является метод валентных связей (МВС), предложенный Полингом. В основе метода лежит ряд положений:

Связь между комплексообразователем и лигандами донорно-акцепторная. Лиганды предоставляют электронные пары, а ядро комплекса – свободные орбитали. Мерой прочности связи служит степень перекрывания орбиталей.

Орбитали центрального атома, участвующие в образовании связей, подвергаются гибридизации. Тип гибридизации определяется числом, природой и электронной структурой лигандов. Гибридизация электронных орбиталей комплексообразователя определяет геометрию комплекса.

Дополнительное упрочнение комплекса обусловлено тем, что наряду с σ-связями могут возникать и π-связи.

Магнитные свойства, проявляемые комплексом, объясняются исходя из заселенности орбиталей. При наличии неспаренных электронов комплекс парамагнитен. Спаренность электронов обусловливает диамагнетизм комплексного соединения.

МВС пригоден для описания только ограниченного круга веществ и не объясняет оптические свойства комплексных соединений, т.к. не учитывает возбужденные состояния.

Дальнейшим развитием электростатической теории на квантово-механической основе является теория кристаллического поля (ТКП). Согласно ТКП, связь между ядром комплекса и лигандами ионная или ион-дипольная. Основное внимание ТКП уделяет рассмотрению тех изменений, которые происходят в комплексообразователе под влиянием поля лигандов (расщепление энергетических уровней). Представление об энергетическом расщеплении комплексообразователя может быть использовано для объяснения магнитных свойств и окраски комплексных соединений.

ТКП приложима лишь к комплексным соединениям, в которых комплексообразователь (d -элемент) имеет свободные электроны, и не учитывает частично ковалентный характер связи комплексообразователь-лиганд.

Метод молекулярных орбиталей (ММО) учитывает детальную электронную структуру не только комплексообразователя, но и лигандов. Комплекс рассматривается как единая квантово-механическая система. Валентные электроны системы располагаются на многоцентровых молекулярных орбиталях, охватывающих ядра комплексообразователя и всех лигандов. Согласно ММО, рост энергии расщепления обусловлен дополнительным упрочнением ковалентной связи за счет π-связывания.

ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САМАРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ СООБЩЕНИЯ»

Уфимский институт путей сообщения

Кафедра общеобразовательных и профессиональных дисциплин

Конспект лекции по дисциплине «Химия»

на тему: «Комплексные соединения»

для студентов 1 курса

железнодорожных специальностей

всех форм обучения

Составитель:

Конспект лекции по дисциплине «Химия» на тему «Комплексные соединения» для студентов 1 курса железнодорожных специальностей всех форм обучения / составитель: . – Самара: СамГУПС, 2011. – 9 с.

Утверждены на заседании кафедры ОиПД 23.03.2011г., протокол

Печатаются по решению редакционно-издательского совета университета.

Составитель:

Рецензенты: зав. кафедрой «Общая и инженерная химия» СамГУПС,

д. х.н., профессор;

доцент кафедры «Общая и неорганическая химия» БГУ (г. Уфа),

Подписано в печать 07.04.2011г. Формат 60/901/16.

Бумага писчая. Печать оперативная. Усл. печ. л. 0,6.

Тираж 100. Заказ № 73.

© Самарский государственный университет путей сообщения, 2011

Содержание Конспекта лекции соответствует государственному общеобразовательному стандарту и требованиям высшей школы к обязательному минимуму содержания и уровню знаний выпускников высшей школы по циклу «Естественнонаучные дисциплины». Лекция изложена как продолжение Курса лекций по химии для студентов железнодорожных специальностей 1-го курса всех форм обучения, составленного коллективом кафедры «Общая и инженерная химия»


Лекция содержит основные положения теорий химической связи, устойчивости комплексов, номенклатуру комплексных соединений, примеры решения задач. Изложенный в Лекции материал будет полезным подспорьем при изучении темы «Комплексные соединения» студентами дневной и заочной форм обучения и при решении контрольных заданий студентами заочного отделения всех специальностей.

Данное издание располагается на сайте института.

Комплексные соединения

Образование многих химических соединений происхо­дит в соответствии с валентностью атомов. Такие соединения называются простыми или соедине­ниями первого порядка. Вместе с тем, известно очень много соединений, образование которых невозможно объ­яснить исходя из правил валентности. Они образуются путем сочетания простых соединений. Такие соединения называются соединениями высшего порядка, комплексными или координационными соединениями. Примеры простых соединений: Н2О, NH3, AgCl, CuSO4. Примеры комплексных соединений: AgCl 2NH3, Co (NO3)3 6NH3, ZnSO4 4H2O, Fe (CN)3 3KCN, PtCl2 2KCI, PdCl2 2NH3.

Ионы некоторых элементов обладают способностью присоединять к себе полярные молекулы или другие ионы, образуя сложные комплексные ионы. Соединения, в которые входят комплексные ионы, способные существовать как в кристалле, так и в растворе, называются комплексными соединениями. Количество известных комплексных соединений во много раз превышает число привычных для нас простых соединений. Комплексные соединения были известны уже более полутора веков назад. До тех пор, пока не была установлена природа химической связи, причины их образования, эмпирические формулы соединений запи­сывали так, как мы указали в приведенных выше при­мерах. В 1893 г. швейцарский химик Альфред Вернер предложил первую теорию строения комплексных соединений, получившую название координационной теории. Комплексные соединения составляют наиболее обширный и разнообразный класс неорганических веществ. К ним принадлежат также многие элементоорганические соединения. Исследование свойств и пространственного строения комплексных соединений породило новые представления о природе химической связи.

1. Координационная теория

В молекуле комплексного соединения различают следующие структурные элементы: ион-комплексообразователь, координированные вокруг него присоединенные частицы - лиганды , составляющие вместе с комплексообразователем внутреннюю координационную сферу , и остальные частицы входящие во внешнюю координационную сферу . При растворении комплексных соединений лиганды остаются в прочной связи с ионом-комплексообразователем, образуя почти недиссоциирующий комплексный ион. Число лигандов называется координационным числом (к. ч.).

Рассмотрим ферроцианид калия K4 – комплексное соединение, образующееся при взаимодействии 4KCN+Fe(CN)2=K4.

При растворении комплексное соединение диссоциирует на ионы: K4↔4K++4-

Характерные комплексообразователи: Fe2+, Fe3+, Co3+, Cr3+, Ag+, Zn2+, Ni2+.

Характерные лиганды: Cl-, Br-, NO2-, CN-, NH3, H2O.

Заряд комплексообразователя равняется алгебраической сумме зарядов составляющих его ионов, например, 4-, x+6(-1)=-4, x=2.

Входящие в состав комплексного иона нейтральные молекулы оказывают влияния на заряд. Если вся внутренняя сфера заполнена только нейтральными молекулами,

то заряд иона равен заряду комплексообразователя. Так, у иона 2+, заряд меди x=+2.

Заряд комплексного иона равен сумме зарядов ионов, находящихся во внешней сфере. В K4 заряд равен -4, так как во внешней сфере находится 4K+, а молекула в целом электронейтральна. Возможно взаимное замещение лигандов во внутренней сфере при сохранении одного и того же координационного числа, например, Cl2, Cl, . Заряд иона кобальта равен +3.


Номенклатура комплексных соединений

При составлении названий комплексных соединений вначале указывается анион, а затем в родительном паде­же - катион (подобно простым соединениям: хлорид калия или сульфат алюминия). В скобках римской циф­рой указывается степень окисления центрального атома. Лиганды называются следующим образом: Н2О - аква, NH3 - аммин, С1- -хлоро-, CN - - циано-, SO4 2- - сульфато - и т. д. Назовем приведенные выше соединения а) AgCl 2NH3, Co (NO3)3 6NH3, ZnSO4 4H2O; б) Fe (CN)3 3KCN, PtCl2 2KCI; в) PdCl2 2NH3.

С комплексным катионом а) : хлорид диамминсеребра (I), нитрат гексамминкобальта (III), сульфат тетраквоцинка (П).

С комплексным анионом б) : гексацианоферрат (III) калия, тетрахлороплатинат (II) калия.

Комплекс - неэлектролит в) : дихлородиамминпалладий.

В случае неэлектролитов название строится в имени­тельном падеже и степень окисления центрального атома не указывается.

2. Методы установления координационных формул

Существует ряд методов установления координационных формул комплексных соединений.

С помощью реакций двойного обмена. Именно таким путем была доказана структура следующих комплексных соединений платины: PtCl4 ∙ 6NH3, PtCl4 ∙ 4NH3, PtCl4 ∙ 2NH3, PtCl4 ∙ 2KCl.

Если подействовать на раствор первого соединения раствором AgNO3, то весь содержащийся в нем хлор осаждается в виде хлорида серебра. Очевидно, что все четыре хлорид-иона находятся во внешней сфере и, следовательно, внутренняя сфера состоит только из лигандов аммиака . Таким образом, координационная формула соединения будет Cl4. В соединении PtCl4 ∙ 4NH3 нитрат серебра осаждает только половину хлора, т. е. во внешней сфере находятся только два хлорид-иона, а остальные два вместе с четырьмя молекулами аммиака входят в состав внутренней сферы, так что координационная формула имеет вид Cl2. Раствор соединения PtCl4 ∙ 2NH3 не дает осадка с AgNO3, это соединение изображается формулой . Наконец, из раствора соединения PtCl4 ∙ 2KCl нитрат серебра тоже не осаждает AgCl, но путем обменных реакций можно установить, что в растворе имеются ионы калия. На этом основании строение его изображается формулой K2.

По молярной электрической проводимости разбавленных растворов. При сильном разбавлении молярная электрическая проводимость комплексного соединения определяется зарядом и числом образующихся ионов. Для соединений, содержащих комплексный ион и однозарядные катионы или анионы, имеет место следующее примерное соотношение:

Число ионов, на которые распадается

молекула электролита

Λ(В), Ом-1 ∙ см2 ∙ моль-1

Измерение молярной электрической проводимости Λ(В) в ряду комплексных соединений платины(IV) позволяет составить следующие координационные формулы: Cl4 - диссоциирует с образованием пяти ионов; Cl2 - трех ионов; - нейтральная молекула; K2 – трех ионов, два из которых ионы калия. Существует и ряд других физико-химических методов установления координационных формул комплексных соединений.

3. Вид химической связи в комплексных соединениях

а) Электростатические представления .

Образование многих комплексных соединений можно в первом приближении объяснить электростатическим притяжением между центральным катионом и анионами или полярными молекулами лигандов. Наряду с силами притяжения действуют и силы электростатического отталкивания между одноименно заряженными лигандами. В результате образуется устойчивая группировка атомов (ионов), обладающая минимальной потенциальной энергией. Комплексообразователь и лиганды рассматриваются как заряженные недеформируемые шары определенных размеров. Их взаимодействие учитывается по закону Кулона. Таким образом, химическая связь считается ионной. Если лиганды являются нейтральными молекулами, то в этой модели следует учитывать ион-дипольное взаимодействие центрального иона с полярной молекулой лиганда. Результаты этих расчетов удовлетворительно передают зависимость координационного числа от заряда центрального иона. С увеличением заряда центрального иона прочность комплексных соединений увеличивается, увеличение его радиуса вызывает уменьшение прочности комплекса, но приводит к увеличению координационного числа. С увеличением размеров и заряда лигандов координационное число и устойчивость комплекса уменьшаются. Первичная диссоциация протекает почти нацело, по типу диссоциации сильных электролитов. Лиганды, находящиеся во внутренней сфере, связаны с центральным атомом значительно прочнее, и отщепляются лишь в небольшой степени. Обратимый распад внутренней сферы комплексного соединения носит название вторичной диссоциации. Например, диссоциацию комплекса Cl можно записать так:

Cl→++Cl - первичная диссоциация

+↔Ag++2NH3 вторичная диссоциация

Однако простая электростатическая теория не в состоянии объяснить избирательность (специфичность) комплексообразования, поскольку она не принимает во внимание природу центрального атома и лигандов, особенности строения их электронных оболочек. Для учета этих факторов электростатическая теория была дополнена поляризационными представлениями, согласно которым комплексообразованию благоприятствует участие в качестве центральных атомов небольших многозарядных катионов d-элементов, обладающих сильным поляризующим действием, а в качестве лигандов – больших, легко поляризующихся ионов или молекул. В этом случае происходит деформация электронных оболочек центрального атома и лигандов, приводящая к их взаимопроникновению, что и вызывает упрочнение связей.

б) Метод валентных связей.

В методе валентных связей предполагается, что центральный атом комплексообразователя должен иметь для образования ковалентных связей с лигандами свободные орбитали, число которых определяет максимальное значение к. ч. комплексообразователя. При этом ковалентная σ-связь возникает при перекрывании свободной орбитали атома комплексообразователя с заполненными орбиталями доноров, т. е. содержащими неподеленные пары электронов. Эта связь называется координационной связью.

Пример1 . Комплексный ион 2+ имеет тетраэдрическое строение. Какие орбитали комплексообразователя используются для образования связи с молекулами NH3?

Решение . Тетраэдрическое строение молекул характерно при образовании sp3-гибридных орбиталей.

Пример 2. Почему комплексный ион + имеет линейное строение?

Решение . Линейное строение этого иона является следствием образования двух гибридных sp-орбиталей ионом Cu+, на которые поступают электронные пары NH3.

Пример3 . Почему ион 2- парамагнитен, а 2- диамагнитен?

Решение. Ионы Cl - слабо взаимодействуют с ионами Ni2+. Электронные пары хлора поступают на орбитали следующего вакантного слоя с n=4. При этом 3d-электроны никеля остаются неспаренными, что и обусловливает парамагнетизм 2-.

В 2- вследствие dsp2-гибридизации происходит спаривание электронов и ион диамагнитен

в) Теория кристаллического поля.

Теория кристаллического поля рассматривает электростатическое взаимодействие между положительно заряженными ионами металла-комплексообразователя и неподеленными парами электронов лигандов. Под влиянием поля лигандов происходит расщепление d-уровней иона переходного металла. Обычно встречаются две конфигурации комплексных ионов – октаэдрическая и тетраэдрическая. Величина энергии расщепления зависит от природы лигандов и от конфигурации комплексов. Заселение электронами расщепленных d-орбит производится в соответствии с правилом Хунда, причем ионы OH-, F-, Cl - и молекулы H2O, NO являются лигандами слабого поля, а ионы CN-, NO2- и молекула CO – лигандами сильного поля, значительно расщепляющими d-уровни комплексообразователя. Схемы расщепления d-уровней в октаэдрическом и тетраэдрическом полях лигандов приведены .

Пример1. Изобразить распределение электронов титана в октаэдрическом комплексном ионе 3+.

Решение . Ион парамагнитен в соответствии с тем, что имеется один неспаренный электрон, локализованный на ионе Ti3+. Этот электрон занимает одну из трех вырожденных dε-орбиталей.

При поглощении света возможен переход электрона с dε- на dy-уровень. Действительно, ион 3+, имеющий единственный электрон на dε-орбитали, поглощает свет с длиной волны λ=4930Å. Это вызывает окрашивание разбавленных растворов солей Ti3+ в дополнительный к поглощенному пурпурный цвет. Энергия этого электронного перехода может быть вычислена по соотношению

https://pandia.ru/text/78/151/images/image002_7.png" width="50" height="32 src=">; Е=40 ккал/г∙ион = 1,74 эВ = 2,78∙10-12 эрг/ион. Подставляя в формулу для вычисления длины волны, получаем

DIV_ADBLOCK332">

Константа равновесия в этом случае называется константой нестойкости комплексного иона https://pandia.ru/text/78/151/images/image005_2.png" width="200" height="36 src="> Решая это уравнение, найдем х=2,52∙10-3 г∙ион/л и, следовательно, =10,1∙10-3 моль/л.

Пример2 . Определить степень диссоциации комплексного иона 2+ в 0,1 молярном растворе SO4.

Решение. Обозначим концентрацию , образовавшегося при диссоциации комплексного иона, через х. Тогда =4х, а 2+=(0,1- x) моль/л. Подставим равновесные концентрации компонентов в уравнение Поскольку х<<0,1, то 0,1–х ≈ 0,1. Тогда 2,6∙10-11=256х5, х=2,52∙10-3 моль/л и степень диссоциации комплексного иона

α=2,52∙10-3/0,1=0,025=2,5%.

1. , Яковлев указания к выполнению лабораторных работ по химии для студентов всех специальностей очной формы обучения. – Самара: СамГУПС, 2009. – 46 с.

2. , Химия: контрольные задания для студентов – заочников всех специальностей. – Самара: СамГУПС, 2008. – 100 с.

3. , М Курс лекций по химии для студентов 1-го курса железнодорожных специальностей всех форм обучения. Самара: СамГУПС, 2005. – 63 с.

4. , Резницкий и упражнения по общей химии: Учебное пособие – 2-е изд. – М.: Изд-во Моск. ун-та, 1985. С.60-68.

5. Глинка химия: Учебное пособие для вузов/Под ред. . – изд. 29-е, исправленное – М.: Интеграл-Пресс, 2002. С.354-378.

6. Л Задачи и упражнения по общей химии: Учебное пособие для вузов/ Под. ред. и М.: Кнорус, 2011.- С.174-187 .

7. Коровин химия: Учебник для технич. направлений и спец. вузов-6-е изд.,испр.-М.:Высш. шк., 2006. С.71-82

Основы современной координационной теории были изложены в конце прошлого века швейцарским химиком Альфредом Вернером , обобщившим в единую систему весь накопившийся к тому времени экспериментальный материал по комплексным соединениям. Им были введены понятия о центральном атоме (комплексообразователь ) и его координационном числе , внутренней и внешней сфере комплексного соединения, изомерии комплексных соединений, предприняты попытки объяснения природы химической связи в комплексах.

Все основные положения координационной теории Вернера используются и в настоящее время. Исключение составляет его учение о природе химической связи, которое представляет сейчас лишь исторический интерес.

Образование комплексного иона или нейтрального комплекса можно представить себе в виде обратимой реакции общего типа:

M + n L

где M – нейтральный атом, положительно или отрицательно заряженный условный ион, объединяющий (координирующий) вокруг себя другие атомы, ионы или молекулы L. Атом M получил название комплексообразователя или центрального атома .

В комплексных ионах 2+ , 2

- , 4 - , - комплексообразователями являются медь(II), кремний(IV), железо(II), бор(III).
Чаще всего комплексообразователем служит атом элемента в положительной степени окисления .
Отрицательные условные ионы (т.е. атомы в отрицательной степени окисления) играют роль комплексообразователей сравнительно редко. Это, например, атом азота(-III) в катионе аммония + и т.п.

Атом-комплексообразователь может обладать нулевой степенью окисления. Так, карбонильные комплексы никеля и железа, имеющие состав и , содержат атомы никеля(0) и железа(0).

Комплексообразователь (выделен синим цветом) может участвовать в реакциях получения комплексов, как будучи одноатомным ионом, например:

Ag + + 2 NH 3 [Ag (NH 3) 2 ] + ;
Ag + + 2 CN - [Ag (CN) 2 ]

-

так и находясь в составе молекулы:

Si F 4 + 2 F

- [Si F 6 ] 2 - ;

I 2 + I

- [I (I) 2 ] - ;

P H 3 + H + [P H 4 ] + ;

B F 3 + NH 3 [B (NH 3)F 3 ]

В комплексной частице может быть два и более атомов-комплексообразователей. В этом случае говорят о .

Комплексное соединение может включать несколько комплексных ионов , в каждом из которых содержится свой комплексообразователь .
Например, в одноядерном комплексном соединении состава (SO 4) 2 комплексообразователи K I и Al III , а в - Cu II и Pt IV .

В комплексном ионе или нейтральном комплексе вокруг комплексообразователя координируются ионы, атомы или простые молекулы (L). Все эти частицы, имеющие химические связи с комплексообразователем, называются лигандами (от латинского "ligare " - связывать). В комплексных ионах 2

- и 4 - лигандами являются ионы Cl - и CN - , а в нейтральном комплексе лиганды – молекулы NH 3 и ионы NCS - .

Лиганды, как правило, не связаны друг с другом, и между ними действуют силы отталкивания. В отдельных случаях наблюдается межмолекулярное взаимодействие лигандов с образованием водородных связей .

Лигандами могут быть различные неорганические и органические ионы и молекулы . Важнейшими лигандами являются ионы CN

- , F - , Cl - , Br - , I - , NO 2 - , OH - , SO 3 S 2- , C 2 O 4 2- , CO 3 2- , молекулы H 2 O, NH 3 , CO, карбамида (NH 2) 2 CO, органических соединений – этилендиамина NH 2 CH 2 CH 2 NH 2 , a -аминоуксусной кислоты NH 2 CH 2 COOH и этилендиаминтетрауксусной кислоты (ЭДТА) :

Чаще всего лиганд бывает связан с комплексообразователем через один из своих атомов одной двухцентровой химической связью. Такого рода лиганды получили название монодентатных . К числу монодентатных лигандов относятся все галогенид-ионы, цианид-ион, аммиак, вода и другие.

Некоторые распространенные лиганды типа молекул воды H 2

O, гидроксид-иона OH - , тиоцианат-иона NCS - , амид-иона NH 2 - , монооксида углерода CO в комплексах преимущественно монодентатны , хотя в отдельных случаях (в структурах) становятся бидентатными .

Существует целый ряд лигандов, которые в комплексах являются практически всегда бидентатными . Это этилендиамин, карбонат-ион, оксалат-ион и т.п. Каждая молекула или ион бидентатного лиганда образует с комплексообразователем две химические связи в соответствии с особенностями своего строения:

Например, в комплексном соединении NO 3

бидентатный лиганд – ион CO 3 2 - - образует две связи с комплексообразователем – условным ионом Co(III), а каждая молекула лиганда NH 3 – только одну связь:

Примером гексадентатного лиганда может служить анион этилендиаминтетрауксусной кислоты:

Полидентатные лиганды могут выступать в роли

мостиковых лигандов, объединяющих два и более центральных атома.

Важнейшей характеристикой комплексообразователя является количество химических связей, которые он образует с лигандами, или координационное число (КЧ ). Эта характеристика комплексообразователя определяется главным образом строением его электронной оболочки и обусловливается валентными возможностями центрального атома или условного иона-комплексообразователя ().

Когда комплексообразователь координирует монодентатные лиганды, то координационное число равно числу присоединяемых лигандов. А число присоединяемых к комплексообразователю полидентатных лигандов всегда меньше значения координационного числа.

Значение координационного числа комплексообразователя зависит от его природы, степени окисления, природы лигандов и условий (температуры, природы растворителя, концентрации комплексообразователя и лигандов и др.), при которых протекает реакция комплексообразования. Значение КЧ может меняться в различных комплексных соединениях от 2 до 8 и даже выше. Наиболее распространенными координационными числами являются 4 и 6.

Между значениями координационного числа и степенью окисления элемента-комплексообразователя существует определенная зависимость . Так, для элементов-комплексообразователей , имеющих степень окисления +I (Ag I , Cu I , Au I , I I

и др.) наиболее характерно координационное число 2 – например, в комплексах типа + , - , - .

Со степенью окисления +II (Zn

II , Pt II , Pd II , Cu II и др.) часто образуют комплексы, в которых проявляют координационное число 4, такие как 2+ , 2 - , 0 , 2

- , 2+ .

В аквакомплексах координационное число комплексообразователя в степени окисления +II чаще всего равно 6: 2+ , 2+ , 2+ .

Элементы-комплексообразователи , обладающие степенью окисления +III и +IV (Pt IV , Al III , Co III , Cr III , Fe III
), имеют в комплексах, как правило, КЧ 6.
Например, 3+ , 3
- , 2 - , 3 - , 3 - .

Известны комплексообразователи, которые обладают практически постоянным координационным числом в комплексах разных типов. Таковы кобальт(III), хром(III) или платина(IV) с КЧ 6 и бор(III), платина(II), палладий(II), золото(III) с КЧ 4. Тем не менее большинство комплексообразователей имеет переменное координационное число. Например, для алюминия(III) возможны КЧ 4 и КЧ 6 в комплексах

- и - .

Координационные числа 3, 5, 7, 8 и 9 встречаются сравнительно редко. Есть всего несколько соединений, в которых КЧ равно 12 – например, таких как K 9 .

Если в комплексном ионе или нейтральном комплексе содержатся два и более комплексообразователей, то этот комплекс называется многоядерным . Среди многоядерных комплексов выделяют мостиковые ,

кластерные и многоядерные комплексы смешанного типа .

Атомы комплексообразователя могут быть связаны между собой с помощью мостиковых лигандов , функции которых выполняют ионы OH - , Cl - , NH 2 - , O 2 2- , SO 4 2- и некоторые другие.
Так, в комплексном соединении (NH 4) 2 мостиковыми служат бидентатные гидроксидные лиганды :

В роли мостикового лиганда может выступать полидентатный лиганд, имеющий несколько донорных атомов (например, NCS - с атомами N и S, способными участвовать в образовании связей по донорно-акцепторному механизму), либо лиганд с несколькими электронными парами при одном и том же атоме (например, Cl - или OH -).

В том случае, когда атомы комплексообразователя связаны между собой непосредственно, многоядерный комплекс относят к кластерному типу .
Так, кластером является комплексный анион 2

- :

в котором реализуется четверная связь Re – Re: одна σ-связь, две π- связи и одна δ-связь. Особенно большое число кластерных комплексов насчитывается среди производных d -элементов.

Многоядерные комплексы смешанного типа содержат как связь комплексообразователь–комплексообразователь , так и мостиковые лиганды.
Примером комплекса смешанного типа может служить карбонильный комплекс кобальта состава , имеющий следующее строение:

Здесь имеется одинарная связь Co – Co и два бидентатных карбонильных лиганда CO, осуществляющих мостиковое соединение атомов-комплексообразователей.

________________________

Повторить:

_________________________