Определение непрерывности функции в точке. Понятие непрерывности функции Как понять что функция непрерывна

Лекция 4.

Непрерывность функций

1. Непрерывность функции в точке

Определение 1. Пусть функция y =f (x ) определена в точке х 0 и в некоторой окрестности этой точки. Функция y =f (x ) называется непрерывной в точке х 0 , если существует предел функции в этой точке и он равен значению функции в этой точке, т.е.

Таким образом, условие непрерывности функции y =f (x ) в точке х 0 состоит в том, что:


Так как
, то равенство (32) можно записать в виде

(33)

Это означает, что при нахождении предела непрерывной функции f (x ) можно перейти к пределу под знаком функции, т.е. в функцию f (x ) вместо аргумента х подставить его предельное значение х 0 .

lim sin x =sin(lim x );

lim arctg x =arctg (lim x ); (34)

lim lоg x =lоg (lim x ).

Задание. Найти предел: 1)
; 2)
.

Дадим определение непрерывности функции, опираясь на понятия приращения аргумента и функции.

Т.к. условия
и
одинаковы (рис.4), то равенство (32) принимает вид:

или
.

Определение 2. Функция y =f (x ) называется непрерывной в точке х 0 , если она определена в точке х 0 и её окрестности, и бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции.

Задание. Исследовать на непрерывность функцию y =2х 2 1.

Свойства функций, непрервных в точке

1. Если функции f (x ) и φ (x ) непрерывны в точке х 0 , то их сумма
, произведение
и частное
(при условии
) являются функциями, непрерывными в точке х 0 .

2. Если функция у =f (x ) непрерывна в точке х 0 и f (x 0)>0, то существует такая окрестность точки х 0 , в которой f (x )>0.

3. Если функция у =f (u ) непрерывна в точке u 0 , а функция u=φ (x ) непрерывна в точке u 0 =φ (x 0 ), то сложная функция y =f [φ (x )] непрерывна в точке х 0 .

2. Непрерывность функции в интервале и на отрезке

Функция y =f (x ) называется непрерывной в интервале (a ; b ), если она непрерывна в каждой точке этого интервала.

Функция y =f (x ) называется непрерывной на отрезке [a ; b ], если она непрерывна в интервале (a ; b ), и в точке х =а непрерывна справа (т.е.
), а в точке x =b непрерывна слева (т.е.
).

3. Точки разрыва функции и их классификация

Точки, в которых нарушается непрерывность функции, называются точками разрыва этой функции.

Если х =х 0  точка разрыва функции y =f (x ), то в ней не выполняется по крайней мере одно из условий первого определения непрерывности функции.

Пример.

1.
. 2.

3)
4)
.

▼Точка разрыва х 0 называется точкой разрыва первого рода функции y =f (x ), если в этой точке существуют конечные пределы функции слева и справа (односторонние пределы), т.е.
и
. При этом:


Величину |A 1 -A 2 | называют скачком функции в точке разрыва первого рода. ▲

▼Точка разрыва х 0 называется точкой разрыва второго рода функции y =f (x ), если по крайней мере один из односторонних пределов (слева или справа) не существует или равен бесконечности. ▲

Задание. Найти точки разрыва и выяснить их тип для функций:

1)
; 2)
.

4. Основные теоремы о непрерывных функциях

Теоремы о непрерывности функций следуют непосредственно из соответствующих теорем о пределах.

Теорема 1. Сумма, произведение и частное двух непрерывных функций есть функция непрерывная (для частного за исключением тех значений аргумента, в которых делитель не равен нулю).

Теорема 2. Пусть функции u =φ (x ) непрерывна в точке х 0 , а функция y =f (u ) непрерывна в точке u =φ (x 0 ). Тогда сложная функция f (φ (x )), состоящая из непрерывных функций, непрерывна в точке х 0 .

Теорема 3. Если функция y =f (x ) непрерывна и строго монотонна на [a ; b ] оси Ох , то обратная функция у =φ (x ) также непрерывна и монотонна на соответствующем отрезке [c ;d ] оси Оу.

Всякая элементарная функция непрерывна в каждой точке, в которой она определена.

5. Свойства функций, непрерывных на отрезке

Теорема Вейерштрасса. Если функция непрерывна на отрезке, то она достигает на этом отрезке своего наибольшего и наименьшего значений.

Следствие. Если функция непрерывна на отрезке, то она ограничена на отрезке.

Теорема Больцано-Коши. Если функция y =f (x ) непрерывна на отрезке [a ; b ] и принимает на его концах неравные значения f (a )=A и f (b )=B ,
, то каково бы ни было число С , заключённое между А и В, найдётся точка
такая, что f (c )=C .

Геометрически теорема очевидна. Для любого числа С , заключённого между А и В , найдётся точка с внутри этого отрезка такая, что f (С )=C . Прямая у =С пересечёт график функции по крайней мере в одной точке.

Следствие. Если функция y =f (x ) непрерывна на отрезке [a ; b ] и принимает на его концах значения разных знаков, то внутри отрезка [a ; b ] найдётся хотя бы одна точка с , в которой функция y =f (x ) обращается в нуль: f (c )=0.

Геометрический смысл теоремы: если график непрерывной функции переходит с одной стороны оси Ох на другую, то он пересекает ось Ох .

Приводится определение непрерывности функции в точке. Рассмотрены эквивалентные определения по Гейне, по Коши и в терминах приращений. Определение односторонней непрерывности на концах отрезка. Формулировка отсутствия непрерывности. Разобраны примеры, в которых требуется доказать непрерывность функции, используя определения по Гейне и по Коши.

Содержание

См. также: Предел функции - определения, теоремы и свойства

Непрерывность в точке

Определение непрерывности функции в точке
Функция f(x) называется непрерывной в точке x 0 окрестности U(x 0) этой точки, и если предел при x стремящемся к x 0 существует и равен значению функции в x 0 :
.

Здесь подразумевается, что x 0 - это конечная точка. Значение функции в ней может быть только конечным числом.

Определение непрерывности справа (слева)
Функция f(x) называется непрерывной справа (слева) в точке x 0 , если она определена на некоторой правосторонней (левосторонней) окрестности этой точки, и если правый (левый) предел в точке x 0 равен значению функции в x 0 :
.

Примеры

Пример 1

Используя определения по Гейне и Коши доказать, что функция непрерывна для всех x .

Пусть есть произвольное число. Докажем, что заданная функция непрерывна в точке . Функция определена для всех x . Поэтому она определена в точке и в любой ее окрестности.

Используем определение по Гейне

Используем . Пусть есть произвольная последовательность, сходящаяся к : . Применяя свойство предела произведения последовательностей имеем:
.
Поскольку есть произвольная последовательность, сходящаяся к , то
.
Непрерывность доказана.

Используем определение по Коши

Используем .
Рассмотрим случай . Мы вправе рассматривать функцию на любой окрестности точки . Поэтому будем считать, что
(П1.1) .

Применим формулу:
.
Учитывая (П1.1), сделаем оценку:

;
(П1.2) .

Применяя (П1.2), оценим абсолютную величину разности:
;
(П1.3) .
.
Согласно свойствам неравенств, если выполняется (П1.3), если и если , то .


.

Теперь рассмотрим точку . В этом случае
.
.


.
Это означает, что функция непрерывна в точке .

Аналогичным способом можно доказать, что функция , где n - натуральное число, непрерывна на всей действительной оси.

Пример 2

Используя доказать, что функция непрерывна для всех .

Заданная функция определена при . Докажем, что она непрерывна в точке .

Рассмотрим случай .
Мы вправе рассматривать функцию на любой окрестности точки . Поэтому будем считать, что
(П2.1) .

Применим формулу:
(П2.2) .
Положим . Тогда
.

Учитывая (П2.1), сделаем оценку:


.
Итак,
.

Применяя это неравенство, и используя (П2.2), оценим разность:

.
Итак,
(П2.3) .

Вводим положительные числа и , связав их соотношениями:
.
Согласно свойствам неравенств, если выполняется (П2.3), если и если , то .

Это означает, что для любого положительного всегда найдется . Тогда для всех x , удовлетворяющих неравенству , автоматически выполняется неравенство:
.
Это означает, что функция непрерывна в точке .

Теперь рассмотрим точку . Нам нужно показать, что заданная функция непрерывна в этой точке справа. В этом случае
.
Вводим положительные числа и :
.

Отсюда видно, что для любого положительного всегда найдется . Тогда для всех x , таких что , выполняется неравенство:
.
Это означает, что . То есть функция непрерывна справа в точке .

Аналогичным способом можно доказать, что функция , где n - натуральное число, непрерывна при .

Использованная литература:
О.И. Бесов. Лекции по математическому анализу. Часть 1. Москва, 2004.
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.

См. также:

Определение непрерывности по Гейне

Говорят, что функция действительного переменного \(f\left(x \right)\) является непрерывной в точке \(a \in \mathbb{R}\) (\(\mathbb{R}-\)множество действительных чисел), если для любой последовательности \(\left\{ {{x_n}} \right\}\), такой, что \[\lim\limits_{n \to \infty } {x_n} = a,\] выполняется соотношение \[\lim\limits_{n \to \infty } f\left({{x_n}} \right) = f\left(a \right).\] На практике удобно использовать следующие \(3\) условия непрерывности функции \(f\left(x \right)\) в точке \(x = a\) (которые должны выполняться одновременно):

  1. Функция \(f\left(x \right)\) определена в точке \(x = a\);
  2. Предел \(\lim\limits_{x \to a} f\left(x \right)\) существует;
  3. Выполняется равенство \(\lim\limits_{x \to a} f\left(x \right) = f\left(a \right)\).

Определение непрерывности по Коши (нотация \(\varepsilon - \delta\))

Рассмотрим функцию \(f\left(x \right)\), которая отображает множество действительных чисел \(\mathbb{R}\) на другое подмножество \(B\) действительных чисел. Говорят, что функция \(f\left(x \right)\) является непрерывной в точке \(a \in \mathbb{R}\), если для любого числа \(\varepsilon > 0\) существует число \(\delta > 0\), такое, что для всех \(x \in \mathbb{R}\), удовлетворяющих соотношению \[\left| {x - a} \right| Определение непрерывности в терминах приращений аргумента и функции

Определение непрерывности можно также сформулировать, используя приращения аргумента и функции. Функция является непрерывной в точке \(x = a\), если справедливо равенство \[\lim\limits_{\Delta x \to 0} \Delta y = \lim\limits_{\Delta x \to 0} \left[ {f\left({a + \Delta x} \right) - f\left(a \right)} \right] = 0,\] где \(\Delta x = x - a\).

Приведенные определения непрерывности функции эквивалентны на множестве действительных чисел.

Функция является непрерывной на данном интервале , если она непрерывна в каждой точке этого интервала.

Теоремы непрерывности

Теорема 1.
Пусть функция \(f\left(x \right)\) непрерывна в точке \(x = a\) и \(C\) является константой. Тогда функция \(Cf\left(x \right)\) также непрерывна при \(x = a\).

Теорема 2.
Даны две функции \({f\left(x \right)}\) и \({g\left(x \right)}\), непрерывные в точке \(x = a\). Тогда сумма этих функций \({f\left(x \right)} + {g\left(x \right)}\) также непрерывна в точке \(x = a\).

Теорема 3.
Предположим, что две функции \({f\left(x \right)}\) и \({g\left(x \right)}\) непрерывны в точке \(x = a\). Тогда произведение этих функций \({f\left(x \right)} {g\left(x \right)}\) также непрерывно в точке \(x = a\).

Теорема 4.
Даны две функции \({f\left(x \right)}\) и \({g\left(x \right)}\), непрерывные при \(x = a\). Тогда отношение этих функций \(\large\frac{{f\left(x \right)}}{{g\left(x \right)}}\normalsize\) также непрерывно при \(x = a\) при условии, что \({g\left(a \right)} \ne 0\).

Теорема 5.
Предположим, что функция \({f\left(x \right)}\) является дифференцируемой в точке \(x = a\). Тогда функция \({f\left(x \right)}\) непрерывна в этой точке (т.е. из дифференцируемости следует непрерывность функции в точке; обратное − неверно).

Теорема 6 (Теорема о предельном значении).
Если функция \({f\left(x \right)}\) непрерывна на закрытом и ограниченном интервале \(\left[ {a,b} \right]\), то она ограничена сверху и снизу на данном интервале. Другими словами, существуют числа \(m\) и \(M\), такие, что \ для всех \(x\) в интервале \(\left[ {a,b} \right]\) (рисунок 1).

Рис.1

Рис.2

Теорема 7 (Теорема о промежуточном значении).
Пусть функция \({f\left(x \right)}\) непрерывна на закрытом и ограниченном интервале \(\left[ {a,b} \right]\). Тогда, если \(c\) − некоторое число, большее \({f\left(a \right)}\) и меньшее \({f\left(b \right)}\), то существует число \({x_0}\), такое, что \ Данная теорема проиллюстрирована на рисунке 2.

Непрерывность элементарных функций

Все элементарные функции являются непрерывными в любой точке свой области определения.

Функция называется элементарной , если она построена из конечного числа композиций и комбинаций
(с использованием \(4\) действий - сложение, вычитание, умножение и деление) . Множество основных элементарных функций включает в себя:

На этом уроке будем учиться устанавливать непрерывность функции. Будем делать это с помощью пределов, причем односторонних - правого и левого, которые совсем не страшны, несмотря на то что записываются как и .

Но что такое вообще непрерывность функции? Пока мы не дошли до строгого определения, проще всего представить себе линию, которую можно начертить, не отрывая карандаш от бумаги. Если такая линия начерчена, то она непрерывна. Эта линия и является графиком непрерывной функции.

Графически функция непрерывна в точке , если её график не "разрывается" в этой точке. График такой непрерывной функции - показан на рисунке ниже.

Определение непрерывности функции через предел. Функция является непрерывной в точке при соблюдении трёх условий:

1. Функция определена в точке .

Если хотя бы одно из перечисленных условий не соблюдено, функция не является непрерывной в точке. При этом говорят, что функция терпит разрыв, а точки на графике, в которых график прерывается, называются точками разрыва функции. График такой функции , терпящей разрыв в точке x=2 - на рисунке ниже.

Пример 1. Функция f (x ) определена следующим образом:

Будет ли эта функция непрерывной в каждой из граничных точек её ветвей, то есть в точках x = 0 , x = 1 , x = 3 ?

Решение. Проверяем все три условия непрерывности функции в каждой граничной точке. Первое условие соблюдается, так как то, что функция определена в каждой из граничных точек, следует из определения функции. Осталось проверить остальные два условия.

Точка x = 0 . Найдём левосторонний предел в этой точке:

.

Найдём правосторонний предел:

x = 0 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

Как видим, предел функции и значение функции в точке x = 0 равны. Следовательно, функция является непрерывной в точке x = 0 .

Точка x = 1 . Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 1 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел функции и значение функции в точке x = 1 равны. Следовательно, функция является непрерывной в точке x = 1 .

Точка x = 3 . Найдём левосторонний предел в этой точке:

Найдём правосторонний предел:

Предел функции и значение функции в точке x = 3 должны быть найдены при той ветви функции, которая включает в себя эту точку, то есть второй ветви. Находим их:

.

Предел функции и значение функции в точке x = 3 равны. Следовательно, функция является непрерывной в точке x = 3 .

Основной вывод: данная функция является непрерывной в каждой граничной точке.

Установить непрерывность функции в точке самостоятельно, а затем посмотреть решение

Непрерывное изменение функции можно определить как изменение постепенное, без скачков, при котором малое изменение аргумента влечёт малое изменение функции .

Проиллюстрируем это непрерывное изменение функции на примере.

Пусть над столом висит на нитке груз. Под действием этого груза нитка растягивается, поэтому расстояние l груза от точки подвеса нити является функцией массы груза m , то есть l = f (m ) , m ≥0 .

Если немного изменить массу груза, то расстояние l изменится мало: малым изменениям m соответствуют малые изменения l . Однако если масса груза близка к пределу прочности нити, то небольшое увеличение массы груза может вызвать разрыв нити: расстояние l скачкообразно увеличится и станет равным расстоянию от точки подвеса до поверхности стола. График функции l = f (m ) изображён на рисунке. На участке этот график является непрерывной (сплошной) линией, а в точке он прерывается. В результате получается график, состоящий из двух ветвей. Во всех точках, кроме , функция l = f (m ) непрерывна, а в точке она имеет разрыв.

Исследование функции на непрерывность может быть как самостоятельной задачей, так и одним из этапов полного исследования функции и построения её графика .

Непрерывность функции на промежутке

Пусть функция y = f (x ) определена в интервале ]a , b [ и непрерывна в каждой точке этого интервала. Тогда она называется непрерывной в интервале ]a , b [ . Аналогично определяется понятие непрерывности функции на промежутках вида ]- ∞, b [ , ]a , + ∞[ , ]- ∞, + ∞[ . Пусть теперь функция y = f (x ) определена на отрезке [a , b ] . Разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок. Здесь следует упомянуть о так называемой односторонней непрерывности: в точке a , оставаясь на отрезке [a , b ] , мы можем приближаться только справа, а к точке b - только слева. Функция называется непрерывной на отрезке [a , b ] , если она непрерывна во всех внутренних точках этого отрезка, непрерывна справа в точке a и непрерывна слева в точке b .

Примером непрерывной функции может служить любая из элементарных функций. Каждая элементарная функция непрерывна на любом отрезке, на котором она определена. Например, функции и непрерывны на любом отрезке [a , b ] , функция непрерывна на отрезке [0 , b ] , функция непрерывна на любом отрезке, не содержащем точку a = 2 .

Пример 4. Исследовать функцию на непрерывность.

Решение. Проверяем первое условие. Функция не определена в точках - 3 и 3. По меньшей мере одно из условий непрерывности функции на всей числовой прямой не выполняется. Поэтому данная функция является непрерывной на интервалах

.

Пример 5. Определить, при каком значении параметра a непрерывна на всей области определения функция

Решение.

Найдём правосторонний предел при :

.

Очевидно, что значение в точке x = 2 должно быть равно ax :

a = 1,5 .

Пример 6. Определить, при каких значениях параметров a и b непрерывна на всей области определения функция

Решение.
Найдём левосторонний предел функции в точке :

.

Следовательно, значение в точке должно быть равно 1:

Найдём левосторонний функции в точке :

Очевидно, что значение функции в точке должно быть равно :

Ответ: функция непрерывна на всей области определения при a = 1; b = -3 .

Основные свойства непрерывных функций

К понятию непрерывной функции математика пришла, изучая в первую очередь различные законы движения. Пространство и время бесконечны, и зависимость, например, пути s от времени t , выраженная законом s = f (t ) , даёт пример непрерывной функции f (t ) . Непрерывно изменяется и температура нагреваемой воды, она также является непрерывной функцией от времени: T = f (t ) .

В математическом анализе доказаны некоторые свойства, которыми обладают непрерывные функции. Приведём важнейшие из этих свойств.

1. Если непрерывная на интервале функция принимает на концах интервала значения разных знаков, то в некоторой точке этого отрезка она принимает значение, равное нулю. В более формальном изложении это свойство дано в теореме, известной как первая теорема Больцано-Коши.

2. Функция f (x ) , непрерывная на интервале [a , b ] , принимает все промежуточные значения между значениями в концевых точках, то есть, между f (a ) и f (b ) . В более формальном изложении это свойство дано в теореме, известной как вторая теорема Больцано-Коши.

Пусть точка a принадлежит области задания функции f(x) и любая ε -окрестность точки a содержит отличные от a точки области задания функции f(x) , т.е. точка a является предельной точкой множества {x} , на котором задана функция f(x) .

Определение . Функция f(x) называется непрерывной в точке a , если функция f(x) имеет в точке a предел и этот предел равен частному значению f(a) функции f(x) в точке a .

Из этого определения имеем следующее условие непрерывности функции f(x) в точке a :

Так как , то мы можем записать

Следовательно, для непрерывной в точке a функции символ предельного перехода и символ f характеристики функции можно менять местами.

Определение . Функция f(x) называется непрерывной справа (слева) в точке a , если правый (левый) предел этой функции в точке a существует и равен частному значению f(a) функции f(x) в точке a .

Тот факт, что функция f(x) непрерывна в точке a справа записывают так:

А непрерывность функции f(x) в точке a слева записывают как:

Замечание . Точки, в которых функция не обладает свойством непрерывности, называются точками разрыва этой функции.

Теорема . Пусть на одном и том же множестве заданы функции f(x) и g(x) , непрерывные в точке a . Тогда функции f(x)+g(x) , f(x)-g(x) , f(x) · g(x) и f(x)/g(x) - непрерывны в точке a (в случае частного нужно дополнительно требовать g(a) ≠ 0 ).

Непрерывность основных элементарных функций

1) Степенная функция y=x n при натуральном n непрерывна на всей числовой прямой.

Сначала рассмотрим функцию f(x)=x . По первому определению предела функции в точке a возьмем любую последовательность {x n } , сходящуюся к a , тогда соответствующая последовательность значений функций {f(x n)=x n } также будет сходиться к a , то есть , то есть функция f(x)=x непрерывная в любой точек числовой прямой.

Теперь рассмотрим функцию f(x)=x n , где n - натуральное число, тогда f(x)=x · x · … · x . Перейдем к пределу при x → a , получим , то есть функция f(x)=x n непрерывна на числовой прямой.

2) Показательная функция.

Показательная функция y=a x при a>1 является непрерывной функцией в любой точке бесконечной прямой.

Показательная функция y=a x при a>1 удовлетворяет условиям:

3) Логарифмическая функция.

Логарифмическая функция непрерывна и возрастает на всей полупрямой x>0 при a>1 и непрерывна и убывает на всей полупрямой x>0 при 0, причем

4) Гиперболические функции.

Гиперболическими функциями называются следующие функции:

Из определения гиперболических функции следует, что гиперболический косинус, гиперболический синус и гиперболический тангенс заданы на всей числовой оси, а гиперболический котангенс определен всюду на числовой оси, за исключением точки x=0 .

Гиперболические функции непрерывны в каждой точке области их задания (это следует из непрерывности показательной функции и теоремы об арифметических действиях).

5) Степенная функция

Степенная функция y=x α =a α log a x непрерывна в каждой точке открытой полупрямой x>0 .

6) Тригонометрические функции.

Функции sin x и cos x непрерывны в каждой точке x бесконечной прямой. Функция y=tg x (kπ-π/2,kπ+π/2) , а функция y=ctg x непрерывна на каждом из интервалов ((k-1)π,kπ) (здесь всюду k - любое целое число, т.е. k=0, ±1, ±2, …) .

7) Обратные тригонометрические функции.

Функции y=arcsin x и y=arccos x непрерывны на отрезке [-1, 1] . Функции y=arctg x и y=arcctg x непрерывны на бесконечной прямой.

Два замечательных предела

Теорема . Предел функции (sin x)/x в точке x=0 существует и равен единице, т.е.

Этот предел называется первым замечательным пределом .

Доказательство . При 0 справедливы неравенства 0<\sin x. Разделим эти неравенства на sin x , тогда получим

Эти неравенства справедливы также и для значений x , удовлетворяющих условиям -π/2. Это следует из того, что cos x=cos(-x) и . Так как cos x - непрерывная функция, то . Таким образом, для функций cos x , 1 и в некоторой δ -окрестности точки x=0 выполняются все условия теорем. Следовательно, .

Теорема . Предел функции при x → ∞ существует и равен числу e :

Этот предел называется вторым замечательным пределом .

Замечание . Верно также, что

Непрерывность сложной функции

Теорема . Пусть функция x=φ(t) непрерывна в точке a , а функция y=f(x) непрерывна в точке b=φ(a) . Тогда сложная функция y=f[φ(t)]=F(t) непрерывна в точке a .

Пусть x=φ(t) и y=f(x) - простейшие элементарные функции, причем множество значений {x} функции x=φ(t) является областью задания функции y=f(x) . Как мы знаем, элементарные функции непрерывны в каждой точке области задания. Поэтому по предыдущей теореме сложная функция y=f(φ(t)) , то есть суперпозиция двух элементарных функций, непрерывна. Например, функция непрерывна в любой точке x ≠ 0 , как сложная функция от двух элементарных функций x=t -1 и y=sin x . Также функция y=ln sin x непрерывна в любой точке интервалов (2kπ,(2k+1)π) , k ∈ Z (sin x>0 ).