Однородное уравнения теплопроводности примеры решения. Аналитические методы решения уравнения теплопроводности. Мгновенный точечный источник

Вывод уравнения теплопроводности

Представим однородное тело и вычленим из него элементарный объем со сторонами, (рисунок 1).

Рисунок 1. Контрольный объем в прямоугольной системе координат

Входящие потоки тепла, расположенные перпендикулярно к поверхностям обозначим как, . Потоки на противоположных поверхностях выразим из рядов Тейлора:

Внутри тела так же могут быть внутренние источники тепла, если и стоки, если:

Изменение внутренней энергии:

Подставим уравнения (1.1.1) в получившееся уравнение (1.1.5):

Подставив их в уравнение (1.1.6), получим уравнение теплопроводности в общем виде для трехмерного пространства:

Введем коэффициент температуропроводности:

и опустим внутренние источники тепла. Получим уравнение теплопроводности в трехмерном пространстве без внутренних источников тепла:

Условия однозначности

Уравнение (1.1) описывает процесс в общем виде. Для ее применения к конкретной задаче необходимы дополнительные условия, называемые условиями однозначности. Данные условия включают в себя геометрические(форма и размеры тела), физические (физические свойства тела), временные(начальное распределение температуры) и граничные условия(описывают процесс теплообмена с окружающей средой).

Граничные условия можно разделить на три основных рода :

1. Граничные условия Дирихле: задано значение функции на границе.

В случае задачи теплопроводности задают значения температуры на поверхности тела.

2. Граничные условия Неймана: задана нормальная производная функции на границе.

Задают плотность теплового потока на поверхности тела.

3. Граничные условия Робена: задана линейная комбинация значения функции и ее производной на границе.

Описывают теплообмен между поверхностью тела и окружающей средой по закону Ньютона-Рихмана.

В данной работе будут использованы только граничные условия Дирихле, в силу сложности реализации остальных граничных условий.

Уравнение теплопроводности в однородной среде, как мы видели, имеет вид

Коэффициент внутренней теплопроводности, с - теплоемкость вещества и - плотность. Кроме уравнения (1), нужно иметь в виду начальное условие, дающее начальное распределение температуры и при

Если тело ограничено поверхностью (S), то на этой поверхности мы будем иметь и предельное условие, которое может быть различным, смотря по физическим обстоятельствам. Так, например, поверхность (S) может поддерживаться при определенной температуре, которая может и меняться с течением времени. В этом случае предельное условие сводится к заданию функции U на поверхности (S), причем эта заданная функция может зависеть и от времени t. Если температура поверхности не фиксирована, но имеется лучеиспускание в окружающую среду данной температуры то по закону Ньютона, правда, далеко не точному, поток тепла через поверхность (S) пропорционален разности температур окружающего пространства и поверхности тела (S). Это дает предельное условие вида

где коэффициент пропорциональности h называется коэффициентом внешней теплопроводности.

В случае распространения тепла в теле линейных размеров, т. е. в однородном стержне, который мы считаем расположенным вдоль оси вместо уравнения (1) мы будем иметь уравнение

При такой форме уравнения не учитывается, конечно, тепловой обмен между поверхностью стержня и окружающим пространством.

Уравнение (S) можно получить также из уравнения (1), предполагая U не зависящей от . Начальное условие в случае стержня

АНАЛИТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ УРАВНЕНИЯ ТЕПЛОПРОВОДНОСТИ

В настоящее время аналитическим путем решено очень большое количество одномерных задач теплопроводности.

А.В.Лыков, например, рассматривает четыре метода решения уравнения теплопроводности в условиях одномерной задачи: метод разделения переменных, метод источников, операционный метод, метод конечных интегральных преобразований.

В дальнейшем остановимся только на первом методе, получившем наибольшее распространение.

Метод разделения переменных при решении уравнения теплопроводности

Дифференциальное уравнение теплопроводности в условиях одномерной задачи и без источников теплоты имеет вид

T/?ф = a ? 2 t/?x 2 .(3.1)

Это уравнение является частным случаем однородного дифференциального уравнения с постоянными коэффициентами для некоторой функции t от двух переменных x и ф:

Легко проверить, что частным решением этого уравнения будет выражение

t = C exp (бx + вф).(3.3)

Действительно:

  • ?t/?x = бС ехр (бx + вф);?t/?ф = вС ехр (бx + вф);
  • ? 2 t/?x 2 = б 2 С ехр (бx + вф);
  • ? 2 t/?ф 2 = в 2 С ехр (бx + вф);? 2 t/(?x ?ф) = бвС ехр (бx + вф).(3.4)

Совместное решение последних семи уравнении дает

a 1 б 2 + b 1 бв + c 1 в 2 + d 1 б + l 1 в + f 1 = 0.(3.5)

Последнее уравнение называется уравнением коэффициентов.

Переходя к уравнению (3.1) сопоставляя его с уравнением (3.2), заключаем, что

b 1 = c 1 = d 1 = f 1 = 0;a 1 = - a;l 1 = 1.(3.6)

Уравнение коэффициентов (3.5) для частного случая уравнения (3.1) приобретает вид

Б 2 a + в = 0(3.7)

в = б 2 a.(3.8)

Таким образом, частное решение (3.3) является интегралом дифференциального уравнения (3.1) и с учетом (3.8) приобретет вид

t = C exp (б 2 aф + бx).(3.9)

В этом уравнении можно задавать любые значения чисел для C, б, a.

Выражение (3.9) может быть представлено в виде произведения

t = C exp (б 2 aф) exp (бx),(3.10)

где сомножитель exp (б 2 aф) является функцией только времени ф, а сомножитель exp (бx) -- только расстояния x:

exp (б 2 aф) = f (ф);exp (бx) = ц (x).(3.11)

С увеличением времени ф температура во всех точках непрерывно растет и может стать выше наперед заданной, что в практических задачах не встречается. Поэтому обычно берут только такие значения б, при которых б 2 отрицательно, что возможно при б чисто мнимой величине. Примем

б = ± iq,(3.12)

где q -- произвольное действительное число (ранее значком q обозначали удельный тепловой поток),

В этом случае уравнение (3.10) приобретет следующий вид:

t = C exp (- q 2 aф) exp (± iqx).(3.13)

Обращаясь к известной формуле Эйлера

exp (± ix) = cos x ± i sin x(3.14)

и, пользуясь ею, преобразуем уравнение (3.13). Получим два решения в комплексном виде:

Суммируем левые и правые части уравнений (3.15), затем отделим действительные от мнимых частей в левой и правой частях суммы и приравняем их соответственно. Тогда получим два решения:

Введем обозначения:

(C 1 + C 2)/2 = D;(C 1 - C 2)/2 = C(3.17)

тогда получим два решения, удовлетворяющих дифференциальному уравнению теплопроводности (3.1):

t 1 = D exp (- q 2 aф) cos (qx);t 2 = C exp (- q 2 aф) sin (qx).(3.18)

Известно, что если искомая функция имеет два частных решения, то и сумма этих частных решений будет удовлетворять исходному дифференциальному уравнению (3.1), т. е. решением этого уравнения будет

t = C exp (- q 2 aф) sin (qx) + D exp (- q 2 aф) cos (qx),(3.19)

а общее решение, удовлетворяющее этому уравнению, можно записать в следующем виде:

Любые значения q m , q n , C i , D i в уравнении (3.20) будут удовлетворять уравнению (3.1). Конкретизация в выборе этих значений будет определяться начальными и граничными условиями каждой частной практической задачи, причем значения q m и q n определяются из граничных условий, а C i , и D i , -- из начальных.

Помимо общего решения уравнения теплопроводности (3.20) в котором имеет место произведение двух функций, одна из которых зависит от x, а другая - от ф, существуют еще решения, в которых такое разделение невозможно, например:

Оба решения удовлетворяют уравнению теплопроводности, в чем легко убедиться, продифференцировав их сначала по ф, а затем 2 раза по x и подставив результат в дифференциальное уравнение (3.1).

Частный пример нестационарного температурного поля в стенке

Рассмотрим пример применения полученного выше решения.

Исходные данные.

  • 1. Дана бетонная стенка толщиной 2X = 0,80 м.
  • 2. Температура окружающей стенку среды и = 0°С.
  • 3. В начальный момент времени температура стенки во всех точках F(x)=1°C.
  • 4. Коэффициент теплоотдачи стенки б=12,6Вт/(м 2 ·°С); коэффициент теплопроводности стенки л=0,7Вт/(м·°С); плотность материала стенки с=2000кг/м 3 ; удельная теплоемкость c=1,13·10 3 Дж/(кг·°С); коэффициент температуропроводности a=1,1·10 -3 м 2 /ч; относительный коэффициент теплоотдачи б/л = h=18,0 1/м. Требуется определить распределение температуры в стенке через 5 ч после начального момента времени.

Решение. Обращаясь к общему решению (3.20) и имея в виду, что начальное и последующие распределения температуры симметричны относительно оси стенки, заключаем, что ряд синусов в этом общем решении отпадает, и при x = Х оно будет иметь вид

Значения определены из граничных условий (без дополнительных здесь пояснений) и приведены в табл.3.1.

Располагая значениями из табл.3.1, находим искомый ряд значений по формуле

Таблица 3.1 Значения функций, входящих в формулу (3.24)

  • 0,982
  • 0,189
  • --0,862
  • --0,507
  • 0,713
  • 0,701
  • 10,03
  • --0,572
  • --0,820
  • 13,08
  • 0,488
  • 0,874

т. е. Д1 = 1,250; Д2 = -- 0,373; Д3 = 0,188; Д4 = -- 0,109; Д5 = 0,072.

Начальное распределение температуры в рассматриваемой стенке приобретет следующий вид:

Чтобы получить расчетное распределение температуры через 5 ч после начального момента, необходимо определить ряд значений на время через 5 ч. Эти расчеты выполнены в табл.3.2.

Таблица 3.2 Значения функций, входящих в формулу (3.23)

A=(q ni X) 2 (aф/X 2)

Окончательное выражение для распределения температуры в толще стенки через 5 ч после начального момента

На рис.3.1 показано распределение температуры в толще стенки на начальный момент времени и через 5 ч. Наряду с общим решением здесь же изображены и частные, причем римскими цифрами указаны частные кривые, отвечающие последовательным слагаемым рядов (3.25) и (3.26).


Рис.3.1.

При решении практических задач обычно нет необходимости определять температуру во всех точках стенки. Можно ограничиться расчетом температуры лишь для какой-либо одной точки, например для точки в середине стенки. В этом случае объем вычислительных работ по формуле (3.23) значительно сократится.

Если начальная температура в рассмотренном выше случае равна не 1 °С, а Т с, то уравнение (3.20) примет вид

Решение уравнения теплопроводности при различных граничных условиях

Не будем приводить последовательный ход решения уравнения теплопроводности при других граничных условиях, которые имеют практическое значение в решении некоторых задач. Ниже ограничимся лишь формулировкой их условий с показом имеющихся готовых решений.

Исходные данные. Стенка имеет толщину 2Х. В начальный момент во всех ее точках, кроме поверхности, температура Т с Температура на поверхности 0°С удерживается в течение всего расчетного периода.

Требуется найти t = f(x, ф).

Неподвижное водохранилище покрылось льдом при температуре наибольшей плотности воды (Т с = 4°С). Глубина водохранилища 5м (Х = 5 м). Рассчитать температуру воды в водохранилище через 3 месяца после ледостава. Температуропроводность неподвижной воды a = 4,8·10 -4 м 2 /ч. Тепловой поток у дна, т. е. при x = 0, отсутствует.

В течение расчетного периода (ф=3·30·24=2160ч) температура на поверхности удерживается постоянной и равной нулю, т. е. при x = Х Т п = 0°С. Весь расчет сводим в табл. 3 и 4. Эти таблицы позволяют вычислить значения температуры через 3 месяца после начального момента для глубин у дна, а затем выше через 1 м, т. е. t 0(дно) = 4°С; t 1 = 4°С; t 2 = 3,85°С; t 3 = 3,30°С; t 4 = 2,96°С; t 5(пов) = 0°С.

Таблица 3.3


Таблица 3.4


Как видим, в абсолютно неподвижной воде температурные возмущения весьма медленно проникают вглубь. В природных условиях в водоемах под ледяным покровом всегда наблюдаются течения либо гравитационные (проточные), либо конвективные (разноплотностные), либо, наконец, вызванные поступлением грунтовых вод. Все многообразие указанных природных особенностей следует учитывать при практических расчетах, а рекомендации к этим расчетам можно найти в пособиях и в работах К.И.Россинского .

Тело ограничено с одной стороны (полуплоскость). В момент времени ф = 0 во всех точках температура тела равна Т с. Для всех моментов времени ф > 0 на поверхности тела поддерживается температура Т п = 0°С.

Требуется найти распределение температуры в толще тела и потерю теплоты через свободную поверхность как функцию времени: t = f (x, ф),

Решение. Температура в любой точке тела и в любой момент времени

где есть интеграл Гаусса. Его значения в зависимости от функции даны в табл.3.5.

Таблица 3.5


Практически решение начинается с определения отношения, в котором х и ф заданы в условии задачи.

Количество теплоты, теряемой единицей поверхности тела в окружающую среду, определяется по закону Фурье. За весь расчетный период с начального момента до расчетного

В начальный момент времени температура почвы от поверхности до значительной глубины была постоянной и равной 6°С. В этот момент температура на поверхности почвы упала до 0°С.

Требуется определить температуру почвы на глубине 0,5 м через 48 ч при значении коэффициента температуропроводности почвы a = 0,001 м 2 /ч, а также оценить количество теплоты, теряемое поверхностью за это время.

По формуле (3.29) температура почвы на глубине 0,5 м через 48 ч t=6·0,87=5,2°С.

Общее же количество теплоты, потерянной единицей поверхности почвы, при коэффициенте теплопроводности л = 0,35 Вт/(м·°С), удельной теплоемкости c = 0,83·10 3 Дж/(кг·°С) и плотности с = 1500 кг/м 3 определим по формуле (3.30) Q=l,86·10 6 Дж/м 2 .

интегральный теплопроводность теплота тело

Рис.3.2

Вследствие некоторого внешнего воздействия температура поверхности тела, ограниченного с одной стороны (полуплоскость), претерпевает периодические колебания около нуля. Будем считать, что эти колебания гармонические, т. е. температура поверхности меняется по косинусоиде:

где -- продолжительность колебания (период), T 0 -- температура поверхности,

T 0 макс -- ее максимальное отклонение,.

Требуется определить температурное поле как функцию времени.

Амплитуда колебаний температуры меняется с x по следующему закону (рис.3.2):

Пример к задаче № 3. Изменение температуры на поверхности сухой песчаной почвы в течение года характеризуется косинусоидальным ходом. Средняя годовая температура при этом равна 6°С при максимальных отклонениях от средней летом и зимой, достигающих 24 °С.

Требуется определить температуру грунта на глубине 1 м в момент, когда температура на поверхности равна 30°С (условно 1/VII).

Выражение косинусоиды (3.31) применительно к данному случаю (температуре поверхности) при T 0 макс = 24 0 С примет вид

Т 0 = 24 cos (2рф/8760) + 6.

Ввиду того, что поверхность грунта имеет среднюю годовую температуру 6°С, а не нуль, как в уравнении (3.32), расчетное уравнение примет следующий вид:

Приняв для грунта коэффициент температуропроводности a = 0,001 м 2 /ч и имея в виду, что по условию задачи необходимо определить температуру на конец расчетного периода (через 8760 ч от начального момента), найдем

Расчетное выражение (3.34) приобретет следующий вид: t = 24e -0,6 ·0,825 + 6 = 16,9 °С.

На той же глубине 1м максимальная амплитуда годового колебания температуры, согласно выражению (3.33), составит

T 1 макс = 24e -0,6 = 13,2 °С,

а максимальная температура на глубине 1 м

t 1 макс = T x макс + 6 = 13,2 + 6 =19, 2 °С.

В заключение отметим, что рассмотренные задачи и подходы могут быть использованы при решении вопросов, связанных с выпуском теплой воды в водоем, а также при химическом методе определения расхода воды и в других случаях.

Займемся решением первой смешанной задачи для уравнения теплопроводности: найти решение и(х, t) уравнения удовлетворяющее начальному условию и граничным условиям Начнем с простейшей задачи: найти решение u(x,t) однородного уравнения удовлетворяющее начальному условию и нулевым (однородным) граничным условиям Метод Фурье для уравнения теплопроводности Будем искать нетривиальные решения уравнения (4), удовлетворяющие граничным условиям (6), в виде Псдстаапя в форме (7) в уравнение (4), получим или откуда имеем два обыжювенных дифференциальных уравнения Чтобы получить нетривиальные решения и(х, *) вида (7), удовлетворяющие граничным условиям (6), необходимо найти нетривиальные решения уравнения (10), удовлетворяющие граничным условиям Таким образом, для определения фунмдои Х(х) мы приходим к задаче на собственные значения: найти те значения параметра А, при которых существуют нетривиальные решения задачи Эта задача была рассмотрена в предыдущей главе. Там было показано, что только при существуют нетривиальные решения При А = А„ общее решение уравнения (9) имеет вид удовлетворяют уравнению (4) и граничным условиям (6). Образуем формальный ряд Потребовав, чтобы функция и(х} t), определяемая формулой (12), удовлетворяла начальному условию, получим Ряд (13) представляет собой разложение заданной функции в ряд Фурье по синусам в интервале (О, I). Коэффициенты а„ разложения определяются по известным формулам Метод Фурье для уравнения теплопроводности Предположим, что Тогдаряд (13) с коэффициентами, определяемыми по формулам (14), будет сходиться к функции абсолютно и равномерно. Так как при то ряд при также сходится абсолютно и равномерно. Поэтому функция и(х, t) - сумма ряда (12) - непрерывна в области и удовлетворяет начальному и граничному условиям. Остается показать, что функция и(х, t) удовлетворяет уравнению (4) в области 0. Для этого достаточно показать, что ряды, полученные из (12) почленным дифференцированием по t один раз и почленным дифференцированием по х два раза, также абсолютно и равномерно сходятся при. Но это следует из того, что при любом t > 0 если п достаточно велико. Единственность решения задачи (4)-(6) и непрерывная зависимость решения от начальной функции были уже установлены ранее. Таким образом, для t > 0 задача (4)-(6) поставлена корректно; напротив, для отрицательных t зада ча эта некорректна. Замечание. В отличие отдомового уравнения уравнение неомметрично огноситн о времени t: если заменить t на -t, то получаем уравнение другого вида описывает необратимые процессы: Мы можем предсказать, каким станет данное и через промежуток времени данной t, но мы не можем с уверенностью сказать, какн м было это и за время t до рассматриваемого момента. Это раолич иемежду предсказание м и предысторией типично для параболического ура внения и не имеет места, например, для волнового уравн сния; в случае последнего заглянуть в прошлое так же легко, как и в будущее. Пример. Найти распределение температуры в однородном стерве длины ж, если начальная температура стержня и на концах стержня поддерживается нулевая температура. 4 Задача сводится к решению уравнения при начальном условии и граничных условиях Применяя метод Фурье, ищем нетривиальные решения уравнения (15), удовлетворяющие граничным условиям (17), в виде Подставляя u(x,t) в форме (18) в уравнение (15) и разделяя переменные, получим откуда Собственные значения задачи. собственные функции Хп(х) = мп пх. При А = А„ общее решение уравнения (19) имеет вид Tn(t) = апе а п\ так что Решение задачи (15)-(17) ищем в виде ряда Потребовав выполнения начального условия (16), получим откуда. Поэтому решением исходной задачи будет фунхция 2. Рассмотрим теперь следующую задачу: найти решение гх(ж, t) неоднородного уравнения _ удовДстворя ющее начальному условию и однородным граничным услови м Предположим, что функци / непрерывна, имеет непрерывную производ-ную и при всех t > 0 выполняется условие. Решение задачи (1)-(3) будем искать в виде где определим как решение задачи а функци - как решение задачи Задача (8)-(10) рассмотрена в п. 1. Будем искать решение v(x, t) задачи (5)-(7) в виде ряда по собстве нным функциям { краевой задачи. Подсгааяяя t) в виде в уравнение (5), получим Разложим функцию /ОМ) в ряд Фурье по синусам, где Сравнивая два разложения (12) и (13) функции /(х, t) в ряд Фурье, получаем! Пользуясь начальным условием для v(x, t), Метод Фурье для уравнения теплопроводности находим, что Решения уравнений (15) при начальных условиях (16) имеют вид: Подставляя найденные выражения для Tn(t) в ряд (11), получим решение Функция будет решением исходной задачи (1)-(3). 3. Рассмотрим задачу: найти в области решение уравнения при начальном условии и неоднородных граничных условиях Непосредственно метод Фурье неприменим из-за неоднородности условий (20). Введем новую неизвестную функцию v(x, t), положив где Тогда решение задачи (18)-(20) сведется к решению задачи (1)-(3), рассмотренной в п. 2, для функции v(x, J). Упражнения 1. Задан бесконечный однородный стержень. Покажи те, что если начальная температура то влобой момент температура стержня 2. Ко|рцы стержня длиной ж поддерживаются при температуре, равной нулю. Начальная температура определяется формулой Определите температуру стержня для любого момента времени t > 0. 3. Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальная температура стержня определяется формулой Определите температуру стержня для любого момента времени t > 0. 4. Концы стержня длиной I поддерживаются при температуре, равной нулю. Начальное распределение температуры Определите температуру стержня для любого момента времени t > 0. Ответы

Изучение любого физического явления сводится к установлению зависимости между величинами, характеризующими это явление. Для сложных физических процессов, в которых определяющие величины могут существенно изменяться в пространстве и времени, установить зависимость между этими величинами достаточно сложно. В таких случаях используют методы математической физики, которые заключаются в том, что ограничивается промежуток времени и из всего пространства рассматривается некоторый элементарный объем. Это позволяет в пределах выбранного объема и данного промежутка времени пренебречь изменениями величин, характеризующих процесс, и существенно упростить зависимость.

Выбранные таким образом элементарный объем dV и элементарный промежуток времени , в пределах которых рассматривается процесс, с математической точки зрения являются величинами бесконечно малыми, а с физической точки зрения – величинами еще достаточно большими, чтобы в их пределах можно было считать среду как сплошную, пренебрегая ее дискретным строением. Полученная таким образом зависимость является общим дифференциальным уравнением процесса. Интегрируя дифференциальные уравнения, можно получить аналитическую зависимость между величинами для всей области интегрирования и всего рассматриваемого промежутка времени.

Для решения задач, связанных с нахождением температурного поля, необходимо иметь дифференциальное уравнение теплопроводности.

Примем следующие допущения:

    тело однородно и изотропно;

    физические параметры постоянны;

    деформация рассматриваемого объема, связанная с изменением температуры, очень мала по сравнению с самим объемом;

    внутренние источники теплоты в теле, распределены равномерно.

В основу вывода дифференциального уравнения теплопроводности положим закон сохранения энергии, который сформулируем так:

Количество теплоты dQ , введенное в элементарный объем dV извне за время вследствие теплопроводности, а также от внутренних источников, равно изменению внутренней энергии или энтальпии вещества, содержащегося в элементарном объеме.

где dQ 1 – количество теплоты, введенное в элементарный объем dV путем теплопроводности за время ;

dQ 2 – количество теплоты, которое за время выделилось в элементарном объеме dV за счет внутренних источников;

dQ – изменение внутренней энергии (изохорный процесс) или энтальпии вещества (изобарный процесс), содержащегося в элементарном объеме dV за время .

Для получения уравнения рассмотрим элементарный объем в виде кубика со сторонами dx , dy , dz (см. рис.1.2.). Кубик расположен так, чтобы его грани были параллельны соответствующим координатным плоскостям. Количество теплоты, которое подводится к граням элементарного объема за время в направлении осей x , y , z обозначим соответственно dQ x , dQ y , dQ z .

Количество теплоты, которое будет отводиться через противоположные грани в тех же направлениях, обозначим соответственно dQ x + dx , dQ y + dy , dQ z + dz .

Количество теплоты, подведенное к грани dxdy в направлении оси x за время , составляет:

где q x – проекция плотности теплового потока на направление нормали к указанной грани. Соответственно количество теплоты, отведенное через противоположную грань будет:

Разница между количеством теплоты, подведенном к элементарному объему, и количеством теплоты, отведенного от него, представляет собой теплоту:

Функция q является непрерывной в рассматриваемом интервале dx и может быть разложена в ряд Тейлора:

Если ограничиться двумя первыми слагаемыми ряда, то уравнение запишется в виде:

Аналогичным образом можно найти количество теплоты, подводимое к объему в направлении двух других координатных осей y и z .

Количество теплоты dQ , подведенное в результате теплопроводности к рассматриваемому объему, будет равно:

Второе слагаемое определим, обозначив количество теплоты, выделяемое внутренними источниками в единице объема среды в единицу времени q v и назовем его мощностью внутренних источников теплоты [Вт/м 3 ], тогда:

Третья составляющая в нашем уравнении найдется в зависимости от характера ТД процесса изменения системы.

При рассмотрении изохорного процесса вся теплота, подведенная к элементарному объему, уйдет на изменение внутренней энергии вещества, заключенного в этом объеме, т.е. dQ = dU .

Если рассматривать внутреннюю энергию единицы объема u = f (t , v ) , то можно записать:

, Дж/м 3

, Дж/кг

где c v изохорная теплоемкость или единицы объема или единицы массы, [Дж/м 3 ];

ρ – плотность, [кг/м 3 ].

Соберем полученные выражения:

Полученное выражение является дифференциальным уравнением энергии для изохорного процесса переноса теплоты .

Аналогично выводится уравнение для изобарного процесса. Вся теплота, подведенная к объему уйдет на изменение энтальпии вещества, заключенного в объеме.

Полученное соотношение является дифференциальным уравнением энергии для изобарного процесса.

В твердых телах перенос теплоты осуществляется по закону Фурье
, значение теплоемкости можно принять
. Напомним, что проекция вектора плотности теплового потока на координатные оси определяются выражениями:



Последнее выражение называют дифференциальным уравнением теплопроводности. Оно устанавливает связь между временным и пространственным изменениями температуры в любой точке тела, в котором происходит процесс теплопроводности.

Наиболее общее дифференциальное уравнение теплопроводности в частных производных имеет такую же форму, но в нем величины ρ , , с являются функциями времени и пространства. Это уравнение описывает большое количество задач теплопроводности, представляющих практический интерес. Если принять теплофизические параметры постоянными, то уравнение будет проще:

Обозначим
, тогда:

Коэффициент пропорциональности а [м 2 /с] называется коэффициентом температуропроводности и является физическим параметром вещества. Он существенен для нестационарных тепловых процессов характеризует скорость изменения температуры. Если коэффициент теплопроводности характеризует способность тел проводить теплоту, то коэффициент температуропроводности является мерой теплоинерционных свойств тела. Например, жидкости и газы обладают большей тепловой инерционностью и, следовательно, малым коэффициентом температуропроводности, а металлы наоборот имеют малую тепловую инерционность.

Если имеются внутренние источники теплоты, а температурное поле является стационарным, то мы получаем уравнение Пуассона:

Наконец, при стационарной теплопроводности и отсутствии внутренних источников теплоты мы получаем уравнение Лапласа:

Условия однозначности для теплопроводности.

Так как дифференциальное уравнение теплопроводности выведено из общих законов физики, то оно описывает целый класс явлений. Для его решения необходимо задать граничные условия или условия однозначности.

Условия однозначности включают:

    геометрические условия – характеризуют форму и размеры тела;

    физические условия – характеризуют физические свойства среды и тела;

    начальные (временные) условия – характеризуют распределение температур в теле в начальный момент времени, задаются при исследовании нестационарных процессов;

    граничные условия – характеризуют взаимодействие рассматриваемого тела с окружающей средой.

Граничные условия могут быть заданы несколькими способами.

Граничные условия первого рода. Задается распределение температуры на поверхности тела для каждого момента времени:

t c = f (x , y , z , τ )

где t c – температура на поверхности тела;

x , y , z – координаты поверхности тела.

В частном случае, когда температура на поверхности является постоянной на протяжении всего времени протекания процессов теплообмена, уравнение упрощается:

t c = const

Граничные условия второго рода. Задаются значения теплового потока для каждой точки поверхности тела и любого момента времени. Аналитически выглядит так:

q c = f (x , y , z , τ )

В простейшем случае плотность теплового потока по поверхности тела остается постоянной. Такой случай имеет место при нагревании металлических изделий в высокотемпературных печах.

Граничные условия третьего рода. При этом задаются температура окружающей среды t ср и закон теплообмена между поверхностью тела и средой. Для описания процесса теплообмена используется закон Ньютона-Рихмана. Согласно этому закону количество теплоты, отдаваемое или принимаемое единицей поверхности тела в единицу времени, пропорционально разности температур поверхности тела и среды:

где α коэффициент пропорциональности, называется коэффициентом теплоотдачи [Вт/(м 2 ·К)], характеризует интенсивность теплообмена. Численно он равен количеству теплоты, отдаваемому единицей поверхности тела в единицу времени при разности температур равной одному градусу. Согласно закону сохранения энергии количество теплоты, которое отводится окружающей среде, должно равняться теплу, подводимому вследствие теплопроводности из внутренних частей тела, то есть:

Последнее уравнение является граничным условием третьего рода.

Встречаются более сложные технические задачи, когда ни одно из перечисленных условий задать невозможно, и тогда приходится решать задачу методом сопряжения. При решении такой задачи должны выполняться условия равенства температур и тепловых потоков по обе стороны от границы раздела. В общем случае условия сопряженности можно записать:

Решение сопряженной задачи связано с нахождением температурных полей по обе стороны границы раздела.