Клонирование животных: технология. Клонирование - особенности технологии и этические вопросы Все о клонировании

Введение

Последние десятилетия XX века ознаменовались бурным развитием одной из главных ветвей биологической науки - молекулярной генетики. Уже в начале 70-х годов ученые в лабораторных условиях начали получать и клонировать рекомбинантные молекулы ДНК, культивировать в пробирках клетки и ткани растений и животных. Возникло новое направление генетики - генетическая инженерия. На основе ее методологии начали разрабатываться различного рода биотехнологии, создаваться генетически измененные организмы (ГМО). Появилась возможность генной терапии некоторых заболеваний человека, а последнее десятилетие XX века ознаменовалось еще одним важным событием - достигнут огромный прогресс в клонировании животных из соматических клеток.

Термин "клон" происходит от греческого слова "klon", что означает - веточка, побег, черенок, и имеет отношение прежде всего к вегетативному размножению. Клонирование растений черенками, почками или клубнями в сельском хозяйстве, в частности в садоводстве, известно уже более 4-х тыс. лет. Начиная с 70-х годов нашего столетия для клонирования растений стали широко использовать небольшие группы и даже отдельные соматические (неполовые) клетки

Дело в том, что у растений (в отличие от животных) по мере их роста в ходе клеточной специализации - дифференцировки - клетки не теряют так называемых тотипотентных свойств, т.е. не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившая в процессе дифференцировки свое ядро, может дать начало новому организму. Эта особенность растительных клеток лежит в основе многих методов генетики и селекции.



При вегетативном размножении и при клонировании гены не распределяются по потомкам, как в случае полового размножения, а сохраняются в полном составе в течение многих поколений. Все организмы, входящие в состав определенного клона, имеют одинаковый набор генов и фенотипически не различаются между собой. Клетки животных, дифференцируясь, лишаются тотипотентности, и в этом - одно из существенных их отличий от клеток растений.

Цель работы : разобраться с понятием «клонирование» в различных сферах и определить, что можно ожидать от него.

Понятие и сущность клонирования

Одним из ярких примеров достижений ученых, с проблемностью которых человечеству ещё не раз придется столкнуться - является клонирование.

Клонирование – это процесс, в ходе которого живое существо производится от единственной клетки, взятой от другого живого существа.

Клонирование обычно определяется, как производство клеток или организмов с теми же нуклеарными геномами, что и у другой клетки или организма. Соответственно, путём клонирования можно создать любой живой организм или его часть, идентичный уже существующему или существовавшему, если сохранилась информация о его нуклеарных геномах.

Клон – (от греч. сlon – отпрыск, ветвь) это группа клеток или организмов, происшедших от общего предка путём бесполого размножения и являющихся генетически идентичными. Примером клона можно назвать группу бактериальных клеток, образовавшихся в результате деления исходной клетки, потомков морской звезды, регенерировавших из частей разделённого материнского организма, клоном также являются все кусты или деревья, полученные путём вегетативного размножения. Однако вот млекопитающим способность размножаться путём клонирования природа не "предусмотрела". Высокий уровень дифференциации клеток как бы "обратной стороной медали" обозначает утрату ними способности давать начало новому организму. Однако, как показала практика, ядро даже дифференцированной клетки сохраняет все потенции, необходимые для того, чтобы дать начало новому организму.

Суть клонирования проста: требуется две клетки – одна, которая будет донором ядра и хозяин которой клонируется, и яйцеклетка, развитием которой и будет управлять подсаживаемое ядро. Собственное ядро яйцеклетки должно быть уничтожено (клетка энуклеирована). Опыт также показывает, что для клонирования лучше, если яйцеклетка не оплодотворена. Клетку-донор тем или иным способом заставляют перейти в так называемую G0-фазу или стадию покоя. После этого её ядро либо путём пересадки, либо слиянием клеток доставляется в яйцеклетку. Последняя стимулируется к делению и приступает к формированию эмбриона. Последний подсаживается в матку так называемой суррогатной матери, где в случае удачного развития формирует новый организм, являющийся генетически идентичным тому, который был донором ядра.

Сейчас наиболее известны два варианта данной методики – так называемая Рослинская и Гонолульская технологии. Первая была использована при клонировании овцы Долли Яном Вильмутом и Китом Кембеллом из Рослинского института в 1996, а вторая – группой учёных из Университета Гавайи в 1998, в результате чего было получено полсотни клонов мыши.

Ещё несколько десятилетий назад клонирование являлось скорее предметом обсуждения писателей-фантастов, нежели научных дискуссий или общественно-политических дебатов. Стремительное развитие генной инженерии и просто таки расцвет биотехнологий в 1990-е годы создали все условия к практической возможности клонирования живых существ. Научно-технический прогресс, как часто это бывает, воплотил всё в реальность.

История клонирования

Началось все с открытия яйцеклетки в 1883 году немецким цитологом О.Хертвигом, когда было установлено, что в процессе оплодотворения равноправно участвуют мужские и женские клетки.

Первые шаги к клонированию животных были предприняты около ста лет назад зоологом Московского Университета Александром Тихомировым, открывшим на примере тутового шелкопряда партеногенез: развитие без оплодотворения в результате химических и физических воздействий. Однако партеногенетические эмбрионы шелкопряда были нежизнеспособны.

В 30-е годы XX-го века академиком Борисом Астауровым проводилась серия исследований, в результате которых было подобрано термическое воздействие, способное одновременно активировать неоплодотворенное яйцо к развитию и блокировать процесс превращения ядра яйцеклетки с двойным хромосомным набором в ядро с одинарным набором. Таким образом, были получены первые генетические копии. Увы, и такое потомство отличалось низкой жизнеспособностью. В дальнейшем этот метод был усовершенствован академиком Владимиром Струнниковым, работы которого по клонированию шелкопряда получили, в итоге, мировую известность.

История клонирования позвоночных начинается в 40-е годы XX-го века, когда российский эмбриолог, профессор Георгий Лопашов на лягушках разработал метод пересадки ядер, на котором основаны все современные эксперименты по клонированию. Метод состоит в выделении ядра соматической клетки и имплантации его в обезъядренную (энуклеированную) яйцеклетку. А в 50-е годы американские эмбриологи Р.Бриггс и Т.Кинг, которым и достались первые лавры, выполнили сходные опыты по переносу ядра клетки в гигантские икринки африканской шпорцевой лягушки «ксенопус», из которых успешно развились головастики. Затем в 1962 году зоолог Оксфордского университета Дж. Гердон существенно продвинул эти результаты, когда в опытах с южноафриканскими жабами стал использовать в качестве донора ядер не зародышевые клетки, а уже вполне специализировавшиеся клетки эпителия кишечника подросшего головастика. Выживало не более двух процентов клонированного потомства, да и у выживших наблюдались различные дефекты. Однако это был огромный шаг вперед по пути клонирования.

Клонирование растений

Клонирование растений, в отличие от клонирования животных, является обычным процессом, с которым сталкивается любой цветовод или садовод. Ведь часто растение размножают отростками, черенками, усиками и т.д. Это и есть пример клонирования. Природа клонирует организмы миллиарды лет. Например, когда куст клубники дает побег, новое растение вырастает на месте, где этот побег укоренился. Новое растение, и есть клон. Такое же клонирование происходит с травой, картофелем и луком. Люди клонировали растения одним или другим способом тысячи лет. Когда вы берете лист, отрезанный от растения, и выращиваете из него новое растение (вегетативный способ), вы клонируете изначальное растение, потому что у нового растения такой же генетический набор, как и у растения – донора. Следовательно, клонированием можно считать любой процесс вегетативного размножения у растений. Процесс этот у растений значительно более простой, чем клонирование животных. Дело в том, что у растений (в отличие от животных) по мере их роста в ходе клеточной специализации - дифференцировки - клетки не теряют так называемых тотипотентных свойств, т.е. не теряют своей способности реализовывать всю генетическую информацию, заложенную в ядре. Поэтому практически любая растительная клетка, сохранившая в процессе дифференцировки свое ядро, может дать начало новому организму.

Для клонирования растительную клетку достаточно изолировать из целого растения и поместить на питательную среду, содержащую солевые компоненты, витамины, гормоны и источник углеводов, она начинает делиться и образует культуру каллуса. В дальнейшем каллусы можно размножить и получить неограниченное количество биомассы. Основная трудность, с которой сразу же приходится сталкиваться исследователю - это то, что клетки в искусственных условиях начинают бурно делиться и расти, но при этом часто не в состоянии продуцировать вторичные метаболиты, т.е. биологически активные вещества растений. Клеточная инженерия позволяет получать гибридные штаммы, клетки или даже целые растения (растения-регенераты), скрещивая между собой филогенетически (т.е. эволюционно) отдаленные организмы. В случае неполного слияния клеток (т.е. клетка-реципиент получает отдельные участки ядерного генетического материала или части клетки-донора (органеллы)) получаются асимметричные гибриды. Делается это для того, чтобы растение реципиент получило новые удобные для человека свойства, повышенную устойчивость к вирусам, к гербицидам, к вредителям и болезням растений. Пищевые продукты, полученные из таких генно-измененных культур, могут иметь улучшенные вкусовые качества, лучше выглядеть и дольше храниться. Также часто такие растения дают более богатый и стабильный урожай, чем их природные аналоги. За последнее время созданы ряд межвидовых и межродовых гибридов табака, картофеля, томата, капусты, турнепса, сои и мн. др. Использование достижений клеточной инженерии, например, позволило разработать технологии получения безвирусных растений (например, картофеля) путем регенерации целого растения из одной соматической клетки. Ученые работают над изменением генотипов злаков. Они вводят в их генотипы специальный ген бактерий, который будет способствовать усвоению азота из атмосферного воздуха. Решение этой проблемы позволило бы сократить затраты средств на производство азотных удобрений.

Последнее десятилетие ученые строят неутешительные прогнозы относительно быстрорастущего потребления сельскохозяйственных продуктов на фоне снижения площади посевных земель. Решение данной проблемы возможно с помощью технологий получения трансгенных растений, направленных на эффективную защиту сельскохозяйственных культур и увеличение урожайности.

Получение трансгенных растений является на данный момент одной из перспективных и наиболее развивающихся направлений агропроизводства. Существуют проблемы, которые не могут быть решены такими традиционными направлениями как селекция, кроме того, что на подобные разработки требуются годы, а иногда и десятилетия. Создание трансгенных растений, обладающих нужными свойствами, требует гораздо меньшего времени и позволяет получать растения с заданными хозяйственно ценными признаками, а также обладающих свойствами, не имеющими аналогов в природе. Примером последнего, могут служить сорта растений, полученные методами генной инженерии, обладающих повышенной устойчивостью к засухе.

Однако в то время как медицинская продукция уже получила всеобщее признание, внедрение генетически модифицированных продуктов питания в некоторых развитых странах встретило сильнейшую оппозицию, связанную, главным образом, с недостатком генетических знаний и, как следствие страхами. Опасения в отношении трансгенных растений имеют под собой почву.

По мнению специалистов, трансгенные организмы, преимущественно устойчивые к вредителям (в основном за счет токсинов, происходящих из Bacillus thuringiensis) способны вызвать изменения в популяции насекомых, однако куда большее влияние оказывает применение инсектицидов. Устойчивость к солям, воде, засухе и другие характеристики будут оказывать влияние, предсказать которое трудно, поэтому приступать к этим разработкам следует с особой осторожностью.

В целом продукты селекции растений значительно менее агрессивны, чем исходные или дикие растения. Это объясняется тем, что в них человек стремится закрепить выгодные для себя качества, а это зачастую серьезно ограничивает их способность выживать за пределами фермерского поля, где культивирование и контроль за сорняками значительно облегчает им жизнь. Так, например, многие зерновые культуры отбирались по тому признаку, что их колосья не рассыпаются в процессе созревания. Это существенно облегчает уборку урожая, и в то же время препятствует естественному распространению семян. Вероятно, это окажется справедливым и в отношении генетически модифицированных растений, так как по своей основе они также представляют собой культивируемые растения. Недавние эксперименты в Великобритании показали, что сельскохозяйственные генетически модифицированные растения, тестированные на выживание в природных условиях, не имеют никаких преимуществ перед их дикими сородичами.

Создание трансгенных растений в настоящее время развиваются по следующим направлениям:

1.Получение сортов с/х культур с более высокой урожайностью

2.Получение с/х культур, дающих несколько урожаев в год (например, в России существуют ремонтантные сорта клубники, дающие два урожая за лето)

3.Создание сортов с/х культур, токсичных для некоторых видов вредителей (например, в России ведутся разработки, направленные на получение сортов картофеля, листья которого являются остро токсичными для колорадского жука и его личинок)

4.Создание сортов с/х культур, устойчивых к неблагоприятным климатическим условиям (например, были получены устойчивые к засухе трансгенные растения, имеющие в своем геноме ген скорпиона)

5.Создание сортов растений, способных синтезировать некоторые белки животного происхождения (например, в Китае получен сорт табака синтезирующий лактоферрин человека)

Таким образом, создание трансгенных растений позволяет решить целый комплекс проблем, как агротехнических и продовольственных, так и технологических, фармакологических и т.д. Кроме того, уходят в небытие пестициды и другие виды ядохимикатов, которые нарушали естественный баланс в локальных экосистемах и наносили невосполнимый ущерб окружающей среде.

Клонирование животных

Растения - не единственные организмы, которые могут быть клонированы естественно. Неоплодотворенные яйца некоторых животных (червей, некоторых разновидностей рыб, ящериц и лягушек) могут развиться в полноценное взрослое животное под определенными условиями окружающей среды – обычно с помощью разных видов стимуляции. Этот процесс называется партагинез, и потомство – клоны самок, которые отложили яйца. Другой пример естественного клонирования – идентичные близнецы. Хотя они генетически отличны от своих родителей, идентичные близнецы – естественное появление клонов друг друга. Ученые проводили эксперименты с клонированием животных, но никогда не были способны стимулировать специализированную клетку, чтобы произвести непосредственно новый организм. Вместо этого, они полагаются на пересадку генетической информации из специализированной клетки в неоплодотворенную клетку яйца, чья генетическая информация была разрушена или физически удалена.

Учитывая трудности в клонировании животных, говорить о широком практическом применении клонов в животноводстве рано. Однако перспективы у этого направления есть.

Пожалуй, одним из наиболее ярких достижений генетики за последнее время является эксперимент по клонированию овцы, успешно завершенный 23 февраля 1997 года учеными Рослинского университета в Шотландии под руководством Яна Вилмута. Для того, чтобы понять, почему публикация результатов эксперимента вызвала такой сильный общественный резонанс (в печати появились сотни публикаций, посвященных работе шотландских генетиков, а овечка Долли, выращенная в ходе эксперимента в течение нескольких недель не сходила с телевизионных экранов) нужно разобраться в сути проделанных работ.

Итак, эксперимент проходил следующим образом. На первом этапе из вымени овцы была взята клетка молочной железы, причем активность ее генов была временно погашена. После этого клетка была помещена в ооцит - эмбриональное окружение, для того чтобы генетическая ее программа перестроилась на развитие эмбриона. Одновременно с этим из готовой к оплодотворению клетки другой овцы было удалено ядро, после чего клетка несколько часов охлаждалась до температуры 5-10 градусов. На следующем этапе яйцеклетка, точнее оставшаяся от нее цитоплазма была внесена в электрическое поле, где под действием электрического тока разрушились клеточные мембраны, и цитоплазма яйцеклетки слилась с ядром, выделенным из клетки молочной железы. Оплодотворенная таким образом яйцеклетка была помещена в матку третьей овцы, которая и выносила знаменитую Долли, геном которой идентичен геному «матери», из клетки которой было взято ядро. Ян Вилмут и его сотрудники не сразу добились успеха – шесть ягнят-клонов стали жертвой научных изысканий, так как обладали генетическими дефектами почек.

Сходные эксперименты по клонированию животных проводились и раньше: еще в 70-е годы профессору Гердону из Оксфордского университета удалось осуществить пересадку ядра и таким образом клонировать лягушек, в 1995 году были клонированы крысы, проводились эксперименты с другими млекопитающими с тем лишь отличием, что вместо клеток молочной железы использовались клетки эмбриона. Колин Стюарт, известный генетик, работающий в Лаборатории исследования раковых заболеваний в Мэриленде, США, считает, что успех Вилмута во многом обусловлен тем, что ему удалось решить проблему отторжения ядра донорской клеткой, создав для ядра подходящую питательную оболочку.

После публикации работы Вилмута, выяснилось, что еще несколько крупных научных центров были близки к успеху шотландских генетиков. Были рассекречены исследования ученых Орегонского центра изучения приматов: по словам американцев, им удалось создать точные генетические копии человекообразных обезьян, правда, с использованием клеток зародыша. Выяснилось, что с 1993 году китайские генетики проводят работы по клонированию быков, российским ученым удалось клонировать каспийского осетра, а австрийцы заявили о том, что также располагают технологией генетического тиражирования. Успех клонирования млекопитающих не оставляет сомнений в том, что преодоление технических трудностей, связанных с клонированием человека, – лишь дело времени.

Клонирование человека?

Итак, работы по клонированию позвоночных были начаты на амфибиях в начале 50-х годов и интенсивно продолжаются вот уже более четырех десятилетий. Что касается амфибий, то, как было сказано в соответствующем разделе, несмотря на значительные достижения, проблема клонирования взрослых особей остается до сих пор не решенной. Установлено, что в ходе клеточной дифференцировки у позвоночных происходит или потеря определенных генных локусов или их необратимая инактивация. Судя по всему, утрачивается та часть генома, которая контролирует не ранние, а более поздние этапы онтогенеза, в частности, метаморфоз амфибий. Механизм этого явления пока не поддается научному объяснению. Но очевидно, что для клонирования взрослых позвоночных необходимо использовать малодифференцированные делящиеся клетки. Это методически важное положение было учтено в более поздних работах.В 1979 году американский биолог Мак Киннел, внесший большой вклад в работу с амфибиями, утверждал, что полученные результаты не позволяют серьерно говорить о возможности клонирования человека - тогда это казалось недоступным для экспериментальных эмбриологов. Однако еще в то время многие ученые, писатели и даже политики стали активно обсуждать возможностт клонирования человека, а некоторые исследователи даже приступили к таким экспериментам. Например, Шеттлз сообщил, что пересадил ядро сперматогониальной клетки (диплоидного предшественника зрелого гаплоидного спермия) в лишенную ядра яйцеклетку человека. В результате три реконструированные яйцеклетки начали дробление, и возникли похожие на морулы скопления клеток, которые позднее деградировали. Шеттлз полагал, что если трансплантировать такие группы клеток в матку женщины, то они могли бы нормально развиваться. Мак Киннел тогда справедливо возразил, что такое предположение маловероятно и совершенно необоснованно.

Еще 5-6 лет назад никто из ученых, а их работало довольно много в этой области, не ставил вопрос об использовании в качестве доноров ядер клеток взрослых млекопитающих. Работы сводились, в основном, к клонированию эмбрионов домашних животных, и многие из этих исследований были не очень успешны. Поэтому так поразило появившееся в начале 1997 года неожиданное для всех сообщение авторского коллектива под руководством Уилмута, что им удалось, используя соматические клетки взрослых животных, получить клональное животное - овцу по кличке Долли. На самом деле, однако, исследователи прошли долгий путь, и Уилмуту с сотрудниками пришлось собрать воедино все существовавшие к тому времени достижения, прежде чем они смогли сообщить о сенсационном результате своей работы.

У этого первого успешного эксперимента есть существенный недостаток - очень низкий коэффициент выхода живых особей (0,36%), и если учесть также высокий процент гибели развивающихся реконструированных яйцеклеток в плодный период развития (62%), который в 10 раз выше, чем при обычном скрещивании (6%), то встает вопрос о причинах гибели зародышей. Все ли пересаженные донорские ядра обладали тотипотентностью? Сохранялся ли полностью их функциональный геном (набор генов, необходимых для развития), все ли нужные для развития гены были дерепрессированы? Это очень важные вопросы, и по одному животному нельзя сделать окончательные выводы. Тем более, что результаты исследований на амфибиях говорят о необратимом характере инактивации, репрессии генов в ходе клеточной дифференцировки. Возможно, авторам крупно повезло, и они достаточно случайно в трех разных клеточных популяциях отобрали за короткий срок стволовые клетки, для которых характерна низкая дифференцированность и способность к делению. Чтобы подтвердить результат этой, в буквальном смысле слова с.енсационной работы, необходимы дополнительные исследования.

В ближайшие годы главная задача исследователей, работающих в данной области - это, по-видимому, создание культивируемых in vitro линий малодифференцированных стволовых клеток, характеризующихся высокой скоростью деления. Ядра именно таких клеток должны обеспечить полное и нормальное развитие реконструированных яйцеклеток, формирование не только морфологических признаков, но и нормальных функциональных характеристик клонированного организма.

Исследования Уилмута и сотрудников имеют не только практическое, но и большое научное значение для генетики развития. В сущности, они нашли условия, при которых цитоплазма ооцитов млекопитающих может репрограммировать ядро соматической клетки, возвращая ей тотипотентность. После публикации этой работы сразу и широко стал дискутироваться вопрос о возможности клонирования человека. Чтобы его обсуждать, имеет смысл выделить два аспекта: методический и этический.

Из изложенного выше следует, что методически или технически клонирование взрослых млекопитающих разработано еще недостаточно, чтобы можно было уже сейчас ставить вопрос о клонировании человека. Для этого необходимо расширить круг исследований, включив в него. кроме овец. представителей и других видов животных. Уилмут с сотрудниками, например, планирует продолжить свои работы на коровах и свиньях. Такие работы необходимы, чтобы установить, не ограничивается ли возможность клонирования взрослых млекопитающих особенностями или спецификой какого-либо одного или нескольких видов.

Затем необходимо существенно повысить выход жизнеспособных реконструированных эмбрионов и взрослых клонированных животных, выяснить, не влияют ли методические приемы на продолжительность жизни, функциональные характерстики и плодовитость животных. Для клонирования человека очень важно свести к минимуму риск, который, тем не менее, в определенной степени все равно останется, риск дефектного развития реконструированной яйцеклетки, главной причиной которого может быть неполное репрограммирование генома донорского ядра.

Стволовые клетки (упрощенно - клетки ранних человеческих зародышей) давно находятся в центре внимания медицины из-за своих уникальных особенностей. В этих клетках еще работают первобытно-мощные таинственные гены, которые навсегда "умолкают" в клетках взрослого человека. Потенциал роста стволовых клеток просто фантастический - достаточно вспомнить, что триллионноклеточный организм новорожденного человека образуется из одной-единственной клетки всего лишь за 9 месяцев! Но еще больше впечатляет потенциал дифференцировки - одна и та же стволовая клетка может трансформироваться в любую(!) клетку человека, будь то нейрон головного мозга, клетка печени или сердечный миоцит. "Взрослым" клеткам такая трансформация не по силам.

Еще одно свойство этих клеток превращает их в поистине бесценный объект для медицины. "Чужие" стволовые клетки, введенные в организм человека, отторгаются гораздо слабее, чем пересаженные целые органы, состоящие из уже дифференцированных клеток. Это означает, что в принципе можно выращивать в лабораторных условиях предшественники самых разных клеток (сердечных, нервных, печеночных, иммунных и др.), и затем трансплантировать их тяжело больным людям вместо донорских органов

Клонирование – это такой процесс, при котором генетически идентичная копия производится путем бесполого размножения. Этот термин обычно используется для обозначения искусственного клонирования человека. Есть два широко обсуждаемых типа человеческого клонирования: терапевтическое клонирование и репродуктивное клонирование.

Термин «клон» ввел в 1963 году Дж. Б. С. Холдейн, выдающийся шотландский биолог, в своей речи, озаглавленной «Биологические возможности для человека видами на ближайшие десять тысяч лет».

По заказу 57-летней американки Бернанн Маккини в южнокорейской клинике произвели клонирование собаки.

Историю клонирования человека можно проследить от 1880-х годов, когда ученые пытались доказать, как работает генетический материал в клетках.

Что генетический материал не теряется во время деления клетки продемонстрировал Ханс Dreisch на клонировании морских ежей, разделяя две клетки и выращивая их самостоятельно. В 1902 году Ганс Spemman повторяет тот же процесс на саламандрах.

Очень трудно проследить хронологию клонирования растений, из-за того, что такое клонирование растений тысячи лет практикуется как людьми, так и в самой природе.

Клонирования человека — За и Против

О клонировании человека, заговорили, когда шотландские ученые института Рослина создали знаменитую овцу Долли. Это вызвало во всем мире интерес и озабоченность.
Клонирование не так далеко от процедур, как экстракорпоральное оплодотворение, где оплодотворение яйцеклетки происходит в лаборатории и затем переносится в матку.

Экстракорпоральное оплодотворение, как правило, требует извлечения из множества клеток и может производиться несколько раз, чтобы сработать, если оно вообще сработает и даст результат. Это может также привести к многоплодной беременности.

Клонирование является лишь еще одной альтернативой для воспроизводства потомства и в отличие от ЭКО, оно занимает очень мало клеток и срабатывает с первого раза, что для беременности делает его более эффективным способом размножения.
Животные, в настоящее время клонированные, имеют генетически максимально желательные качества. Исследования также проводятся на клонирование исчезающих видов и мертвых животных.

В 2009 году представитель вымерших видов животных — Пиренейский буйвол был клонирован, однако, жил только в течение 7 минут, прежде чем стать вымершим еще раз.

Как происходит клонирование человека

Клонирование человека является производством генетической копии какого-то другого человека. Ядро, или центральная часть клетки, содержит большую часть своего генетического материала.
В клонировании, ядро клетки тела (например, клетки кожи) используется для замены ядра неоплодотворенной яйцеклетки. При активации эмбриона создается клон, который является двойником человека, от которого ядро было взято.

В зависимости от того, что мы хотим получить, клонирование называется «репродуктивным» или «терапевтическим», однако первоначальный метод получения клона был тем же самым.
Клонирования «Репродуктивное» будет происходить, если передать клон в тело женщины и позволить ему родиться. «Терапевтическое» клонирование может произойти, если целью было уничтожить его ради получения частей.

Части являются в центре эмбриона, который умрет, когда эти клетки будут извлечены. Клетки могут затем быть использованы в исследованиях по пересадке для тех, у кого есть определенные заболевания. Стволовые клетки являются универсальными клетками, которые производят видовые клетки, необходимые конкретному пациенту.

Есть, однако, и другие источники стволовых клеток, которые не связаны с эмбрионами, например, взрослого костного мозга, пуповины или сохранены при рождении.
Помимо успешных попыток клонирования различных видов животных, 20-й век ознаменовался также некоторыми из основных достижений в области генеалогии. Успешная расшифровка кода ДНК в 1968 году стала основным стимулом для очень стремительного развития клонирования человека.

В 1988 году геном человека, геном Homosapiens, хранящийся в 23 парах хромосом, был расшифрован. При существующем положении вещей наука прекрасно двигалась в направлении развития человеческого клона.
Серьезный удар пришел в виде Закона 2009 года о запрещении клонирования человека, который считает клонирование — незаконным, неэтичным и аморальным действием.

Против клонирования людей пришли мнения из научного сообщества, которые не были удовлетворены результатами клонирования животных, а также религиозные общины, которые считают клонирование человека вмешательством в человеческую жизнь и продолжение рода.
Это краткая история клонирования человека, охватывает период около 120 лет. По состоянию на 2009, когда клонирование человека стало считаться незаконной деятельностью в 23 странах.

Братство ученых и исследователей надеются, что клонирование человека будет легализовано в ближайшее время, после чего они смогут вернуться в свои лаборатории, и продолжить эксперименты, связанные с прежними исследованиями.

КЛОНИРОВАНИЕ
в биологии - метод получения нескольких идентичных организмов путем бесполого (в том числе вегетативного) размножения. Таким способом на протяжении миллионов лет размножаются в природе многие виды растений и животных. Однако сейчас термин "клонирование" обычно используется в более узком смысле и означает копирование клеток, генов, антител и даже многоклеточных организмов в лабораторных условиях. Появившиеся в результате бесполого размножения экземпляры по определению генетически одинаковы, однако и у них можно наблюдать наследственную изменчивость, обусловленную случайными мутациями или создаваемую искусственно лабораторными методами.
ДНК. Говоря о клонировании, происходящем в природе или в лаборатории, необходимо представлять себе, что вся генетическая, т.е. наследственная, информация, необходимая для роста, развития, обмена веществ и размножения организмов, передается от родителей потомству в форме дезоксирибонуклеиновой кислоты (ДНК).
См. также
НАСЛЕДСТВЕННОСТЬ ;
НУКЛЕИНОВЫЕ КИСЛОТЫ . ДНК упакована в хромосомах, которых в клетке бывает от одной у некоторых одноклеточных до нескольких десятков у высших растений и животных. Генетического материала, находящегося всего в одной хромосоме крошечного одноклеточного существа вроде амебы, достаточно для осуществления всех его жизненных функций. Однако сложно устроенному животному для этого необходимо примерно 100 000 различных генов.
Прокариоты. Прокариоты - это самые простые по строению одноклеточные организмы типа бактерий, в клетках которых нет оформленного ядра и многих органелл, свойственных клеткам эукариотов, т.е. эволюционно более продвинутых организмов. Обычно прокариоты размножаются бесполым путем, а именно простым делением клетки надвое. В результате они образуют клоны.
См. также
КЛЕТКА ;
РАЗМНОЖЕНИЕ .
Эукариоты и многоклеточные животные. Эукариоты характеризуются тем, что их клетки обладают многочисленными органеллами и ядром, в котором заключены хромосомы, т.е. ДНК. Некоторые из этих организмов - одноклеточные, но в большинстве случаев это многоклеточные формы, состоящие из многих различных по структуре и функциям эукариотных клеток. Некоторые простейшие, например амебы и парамеции, способны быстро размножаться путем деления надвое. У многоклеточных животных произошла специализация клеток и сформировались половые клетки (гаметы), предназначенные для полового размножения. У низкоорганизованных многоклеточных встречается как половое, так и бесполое размножение. С усложнением и увеличением подвижности животных половое размножение стало преобладать. Оно обеспечивает сочетание в потомстве признаков обоих родителей, т.е. исключает образование клонов.
Партеногенез. Клонирование в природе наблюдается в случае т.н. партеногенеза, когда потомство развивается из неоплодотворенной женской гаметы (яйцеклетки). Этот процесс широко распространен среди насекомых. Поскольку родительская особь всего одна, она генетически идентична потомкам и составляет с ними клон. У млекопитающих партеногенез можно искусственно стимулировать, но эмбрион погибает на ранних стадиях своего развития.
См. также
ЯЙЦО ;
РАЗМНОЖЕНИЕ .
Размножение растений и получение рассады. У растений известны различные формы бесполого размножения, обычно называемого вегетативным. Самостоятельный организм может развиться у них из частей листьев, стеблей и корней. Если эти части получены от одного растения, то образуется клон. Для вегетативного размножения у многих видов используются специальные структуры, к которым относятся, например, подземные корневища у золотой розги, надземные столоны ("усы") у земляники, луковицы у чеснока, клубни у картофеля и клубнелуковицы у гладиолусов. Таким способом размножают не только травянистые, но и многие древесно-кустарниковые виды. К относительно новым методам коммерческого клонирования некоторых растений относится выращивание их из культуры ткани. Среди сельскохозяйственных культур вегетативно размножают, например, бананы, ананасы, виноград и землянику. Особый способ клонирования, называемый прививкой, применяют в случае плодовых деревьев, в частности пекана, яблони и персика. Черенки, вырезанные из ветвей ценного в хозяйственном отношении экземпляра (привои), приращивают к укорененным растениям (подвоям) того же вида, а иногда и другого - близкого таксономически. Привой нормально растет и приносит плоды, не уступающие по качеству тем, что развиваются на материнском дереве.
Лабораторное клонирование антител. Все позвоночные для защиты от инфекций вырабатывают особые белки - антитела. Разработаны методы их клонирования, позволяющие получать большие количества идентичных молекул. Произведенные таким образом антитела называются моноклональными. Эти высокоспецифичные вещества используются для определения концентрации ряда белков в жидкостях тела, например белковых гормонов, или для выявления раковых клеток (и возможного воздействия на них), что очень важно в научных исследованиях, а кроме того, является относительно недорогим методом диагностики некоторых заболеваний.
Клонирование генов. Становится известно все больше специфических генов, связанных с развитием определенных болезней. Эти гены научились выделять из организма и присоединять к ним соответствующие промоторы, т.е. участки ДНК, управляющие их работой. Получаемые генные комплексы можно клонировать несколькими способами. Один из них - полимеразная цепная реакция (ПЦР), т.е. размножение нужного участка ДНК с помощью фермента полимеразы, что позволяет удваивать количество генных копий каждые несколько минут
(см. также ПОЛИМЕРАЗНАЯ ЦЕПНАЯ РЕАКЦИЯ).
Клонированные таким образом гены можно затем ввести в организм животного (получив т.н. трансгенную особь), которое в результате приобретет способность синтезировать нужное вещество, например ценный фармацевтический продукт. Трансгенные животные служат также моделями для изучения ряда тяжелых болезней человека, в частности муковисцидоза.
Клонирование млекопитающих. Выше уже приводились примеры разных типов клонирования в природе. Если любому зверю порезать кожу, клоны новых клеток быстро приходят на смену поврежденным. Однако клонирование целых высокоорганизованных организмов - процесс гораздо более сложный, чем заживление раны. Зачем вообще клонировать животных? Во-первых, можно было бы воспроизводить ценные с той или иной точки зрения особи, например чемпионов пород крупного рогатого скота, овец, свиней, скаковых лошадей, собак и т.п. Во-вторых, превращение обычных животных в трансгенных сложно и дорого: клонирование позволило бы получать их копии. Проектируется производить трансгенных млекопитающих, способных синтезировать факторы свертывания человеческой крови и другие жизненно важные для нас продукты и выделять их в составе своего молока. Широкомасштабное развитие такой биотехнологии сэкономило бы огромные количества донорской крови, запасы которой ограничены и могли бы использоваться более эффективно.
Первые опыты. Первый опыт клонирования земноводных датируется 1952. Впоследствии удалось клонировать также мышей, кроликов, овец, свиней, коров и обезьян. Все успешные эксперименты такого рода начинались с клеток эмбриона, изолируемых на ранних стадиях развития до начала их дифференцировки в т.н. зародышевые листки, дающие начало специализированным тканям и органам. Эти клетки (бластомеры) разделяют, пока их число в зародыше не превысило 32 или 64, и с помощью особых микрохирургических методов помещают по одной в ооциты (неоплодотворенные яйцеклетки), из которых предварительно удаляют ядро. У всех бластомеров одного эмбриона одинаковый набор генов, а ооциты служат для них как бы инкубатором. После соответствующей электрической и/или химической стимуляции и культивирования из этих клеток можно получить идентичные зародыши и перенести их (имплантировать) в матку готовых к зачатию самок того же вида. В конечном итоге такие "приемные матери" родят почти идентичных детенышей, однако вся процедура в целом остается с практической точки зрения крайне неэффективной. Вместо вынашивания всех эмбрионов из первого клона практикуют также их разделение на бластомеры и повторный цикл клонирования, получая в итоге гораздо большее количество пригодных для имплантации зародышей.
Клонирование взрослых млекопитающих. По мере роста и развития животного соответствующие его гены "включаются" и "выключаются" в строго определенное время, что обеспечивает гармоничное формирование и функционирование всех частей сложного организма. У взрослой особи гены, регулирующие процессы в специализированных (дифференцированных) клетках, должны работать без сбоев, выполняя характерную именно для этой части тела программу: малейшее нарушение здесь чревато болезнью, а то и гибелью всей особи. Следовательно, если вырезать кусочек, скажем, уже сформировавшегося подбородка, нос из него не разовьется. Правда, клетки могут терять специализацию (дедифференцироваться), что наблюдается при возникновении раковых опухолей. Таким образом, клонирование животных из их взрослых клеток путем перепрограммирования последних на нормальное эмбриональное развитие представляет собой хотя и выполнимую теоретически, но крайне сложную задачу, которую многие специалисты считали неразрешимой. В 1997 шотландский эмбриолог Ян Уилмат со своими сотрудниками сообщил об успешном клонировании ягненка из дифференцированной клетки молочной железы шестилетней овцы. Культивируя клетки этого типа на т.н. минимальной (содержащей лишь минимум необходимых для поддержания жизни веществ) питательной среде, не позволявшей им выполнять свои "взрослые" функции, удалось добиться их дедифференцировки до эмбрионального состояния. Затем такую клетку слили с энуклеированной (лишенной ядра) яйцеклеткой другой овцы и имплантировали начавший развитие эмбрион в матку третьей самки. В результате исходная клетка молочной железы повторила и самостоятельно отрегулировала все этапы, которые в норме проходит оплодотворенное яйцо, превращаясь во многие миллиарды специализированных клеток взрослого млекопитающего. Через некоторое время эти исследователи сообщили о клонировании овцы с введенным в нее человеческим геном, а специалисты из США заявили о создании клонов взрослых коров. Важно подчеркнуть, что особи получаемых описанным способом клонов не достигают того уровня идентичности друг другу, который свойствен однояйцовым близнецам. Во-первых, развитие их происходит в разных ооцитах, каждый из которых сохраняет некоторое количество собственной ДНК в митохондриях (органеллах дыхания). Во-вторых, эмбрионы вынашиваются различными "приемными матерями", и, наконец, после рождения каждый детеныш попадает в условия среды, неизбежно являющиеся в той или иной степени уникальными.
Открывающиеся перспективы. Работы Уилмата и других биологов служат основой для новых исследований, которые могли бы значительно расширить наши представления о функционировании генов в ходе нормального развития, а также при воздействии на них ряда лекарственных веществ и стрессовых факторов. Это позволило бы усовершенствовать медицинское обслуживание путем создания и применения новых недорогих инструментов ранней диагностики и лечения. Если бы таким путем удалось разработать методы генной терапии, т.е. "исправления" аномальных генов, ответственных за опасные для жизни врожденные нарушения, человечество смогло бы избавиться от некоторых наследственных заболеваний, серьезно снижающих трудоспособность и сокращающих жизнь людей. О ценности клонирования для создания трансгенных и элитных животных уже говорилось. При его широком применении можно было бы накапливать в замороженном виде неограниченные количества эмбрионов и другого материала, сохраняя таким образом ныне существующую "зародышевую плазму" во всем ее разнообразии.

Энциклопедия Кольера. - Открытое общество . 2000 .

Синонимы :

Смотреть что такое "КЛОНИРОВАНИЕ" в других словарях:

    - [Словарь иностранных слов русского языка

    клонирование - КЛОНИРОВАНИЕ процесс создания генетически идентичных копий живых организмов (или их фрагментов: молекул, клеток, тканей, органов и т.д.). Термин «К.» происходит от греческого слова klon, что означает веточка, побег, черенок. С процессом… … Энциклопедия эпистемологии и философии науки

    Сущ., кол во синонимов: 1 воспроизведение (38) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    клонирование - Процесс создания устройства, которое с точки зрения пользователей не отличимо от широко известного устройства. Благодаря клонированию выпускаются компьютеры различных производителей, которые используют программное обеспечение и внешние устройства … Справочник технического переводчика

    В Викисловаре … Википедия

    Воспроизведение генетически однородных организмов (клеток) путём бесполого (вегетативного) размножения. При клонировании исходный организм (или клетка) служит родоначальником клона – ряда организмов (клеток), повторяющих из поколения в поколение… … Биологический энциклопедический словарь

В биологии называется процесс производства подобных популяций генетически идентичных особей, что происходит в природе, когда организмы, например, бактерии, растения или насекомые, размножаются бесполым способом. Касательно биотехнологии термин «клонирование» относится к процессам, используемым для создания копий фрагментов ДНК (молекулярное), клеток (клеточное) или организмов. Этот термин также относится к производству нескольких копий продукта, например, цифровых носителей или программного обеспечения.

... для диагностики генов и наследственных заболеваний, выявления генетических отпечатков пальцев, диагностики инфекционных заболеваний, клонирования ДНК с целью секвенирования, филогения на основе ДНК. Полимеразная цепная реакция (ПЦР) - это метод биохимической технологии...

Термин «клон» происходит от древнегреческого слова «klōn» («ветка»), имея в виду процесс, посредством которого новое растение может быть создано от ветки.

28 декабря 2006 г. употребление человеком мяса и продуктов питания из клонированных животных было одобрено FDA (Управление по контролю за продуктами и лекарствами США) в США, без какой-либо специальной требуемой маркировки, потому что было обнаружено, что пища из клонированных организмов идентична организмам, от которых они были клонированы. Такая практика встретила сильное сопротивление из-за дезинформации в других регионах, таких как Европа, особенно в связи с проблемой маркировки.

Молекулярное клонирование

Молекулярное клонирование относится к способу получения нескольких молекул. Клонирование обычно используется для амплификации фрагментов ДНК, содержащих целые гены, но оно также может быть использовано для амплификации любой последовательности ДНК, такой как промоторы, некодирующие последовательности и случайным образом фрагментированная ДНК. Оно используется в широком спектре биологических экспериментов и практического применения, начиная от генетической дактилоскопии для крупномасштабного производства белка. Иногда термин ошибочно используется для обозначения идентификации хромосомного расположения гена, ассоциированного с определенным интересующим фенотипом, например, в позиционном клонировании. На практике локализация гена в хромосоме или геномной области не обязательно позволяет выделить или амплифицировать соответствующую геномную последовательность. Чтобы амплифицировать любую последовательность ДНК в живом организме эта последовательность должна быть связана с источником репликации, который представляет собой последовательность ДНК, способную к ориентированию распространения себя и любой связанной последовательности. Тем не менее, необходим ряд других особенностей и выбор специализированных векторов клонирования (маленький кусочек ДНК, в который может быть вставлен инородный фрагмент ДНК), которые позволяют экспрессию белка, мечение, производство одноцепочечной РНК и ДНК и целый ряд других манипуляций.

По сути клонирование любого фрагмента ДНК состоит из четырех этапов:

  • Фрагментация - разрушение цепочки ДНК,
  • Лигирование - склеивание фрагментов ДНК в желаемой последовательности
  • Трансфекция - вставка вновь образованных фрагментов ДНК в клетки
  • Скрининг/селекция - отбор клеток, которые были успешно соединены с новой ДНК

Хотя эти этапы остаются неизменными среди процедур клонирования, могут быть выбраны альтернативные способы, которые они обобщаются в качестве стратегии.

Первоначально должна быть выделена интересующая ДНК, чтобы обеспечить сегмент ДНК подходящего размера. Затем процедура лигирования используется там, где амплифицированный фрагмент встраивается в вектор (участок ДНК). Вектор (часто круговой) линеаризуется с использованием ферментов рестрикции и инкубируется с интересующим фрагментом в соответствующих условиях с ферментом ДНК-лигаза. После лигирования вектор с интересующей вставкой трансфицируется в клетки. Доступен ряд альтернативных методов, например, химическая сенсибилизация клеток, электропорация, оптическая инъекция и биолистика. Наконец, трансфицированные клетки культивируют. Так как вышеуказанные процедуры отличаются особо низкой эффективностью, существует необходимость в идентификации клеток, которые были успешно трансфицированы вектором, содержащим нужную последовательность вставки в нужном направлении. Современные векторы клонирования включают выбираемые маркеры устойчивости к антибиотикам, которые позволяют расти только клеткам, в которых был трансфицирован вектор. Кроме того, векторы клонирования могут содержать маркеры селекции цвета, которые обеспечивают синий/белый скрининг (комплементация альфа-фактора) среды X-gal. Тем не менее, эти этапы селекции не дают абсолютной гарантии, что в полученных клетках присутствует ДНК-вставка. Чтобы подтвердить успешное клонирование, должно последовать обязательное дальнейшее исследование полученных колоний. Это может быть достигнуто с помощью ПЦР, анализа рестрикционных фрагментов и/или секвенирования ДНК.

Видео о клонировании

Клетки

Клонирование клетки означает получение популяции клеток из одной клетки. При работе с одноклеточными организмами, такими как бактерии и дрожжи, этот процесс чрезвычайно прост и по существу требует только инокуляции в соответствующей среде. Тем не менее, клонирование клетки является трудной задачей в случае клеточных культур из многоклеточных организмов, поскольку эти клетки не будут легко расти в стандартной среде.

Техника культуры полезной ткани, используемая для клонирования различных клеточных линий, предполагает использование колец (цилиндров). В соответствии с этим методом, одна клеточная суспензия из клеток, которые были подвержены мутагенному агенту или препарату, используемому для симуляции селекции, высевается при высокой степени разбавления, чтобы создать изолированные колонии, каждая возникающая из единой и потенциально клональной отдельной клетки. На ранней стадии роста, когда колонии образованы только несколькими клетками, стерильные кольца полистирола (кольца клонирования), которые были погружены в смазку, помещают над отдельной колонией и добавляют небольшое количество трипсина. Клонированные клетки собирают изнутри кольца и переносят в новый сосуд для дальнейшего роста.

Стволовые клетки

Перенос ядра соматической клетки, известный как SCNT, также может быть использовано для создания эмбрионов для научных исследований или терапевтических целей. Скорей всего, целью этого является создание эмбрионов для использования в научных исследованиях стволовых клеток. Этот процесс также называется исследовательским или терапевтическим клонированием. Цель заключается не в том, чтобы создавать клонированные человеческие существа (так называемое «репродуктивное клонирование»), а в сборе стволовых клеток, которые можно использовать для изучения развития человека и потенциально лечения болезней. В то время как была создана клональная бластоциста человека, стволовые клеточные линии еще не изолированы от клонального источника.

Терапевтическое клонирование достигается за счет создания эмбриональных стволовых клеток в надежде на лечение заболеваний, таких как диабет и болезнь Альцгеймера. Процесс начинается с извлечением ядра (содержащего ДНК) из яйцеклетки и вставки ядра из взрослой клетки для клонирования. В случае пациента с болезнью Альцгеймера ядро из клетки его кожи помещают в пустую яйцеклетку. Перепрограммированная клетка начинает развиваться в эмбрион, потому что яйцеклетка реагирует с перемещенным ядром. Эмбрион станет генетически идентичным для пациента. Эмбрион затем образует бластоцисты, которые имеют потенциал формировать/становиться любой клеткой в организме.

Причина, по которой SCNT используется для клонирования, заключается в том, что соматические клетки можно легко получить и культивировать в лаборатории. Этот процесс может добавить или удалить определенные геномы сельскохозяйственных животных. Важно помнить, что клонирование достигается тогда, когда яйцеклетка сохраняет свои нормальные функции и вместо использования геномов сперматозоида и яйцеклетки для репликации яйцеклетка вводится в ядро соматической клетки донора. Ооцит будет реагировать на ядро соматической клетки, так же как на сперматозоид.

Процесс клонирования конкретного сельскохозяйственного животного с использованием SCNT относительно одинаков для всех животных. Первым шагом является сбор соматических клеток от животного, которое будет клонироваться. Соматические клетки могут быть использованы непосредственно или храниться в лаборатории для дальнейшего использования. Самая трудная часть SCNT - это удаление материнской ДНК из яйцеклетки на стадии метафазы II. После этого соматическое ядро может быть вставлено в цитоплазму яйцеклетки. Это создает одноклеточный эмбрион. Через сгруппированные соматические клетки и цитоплазму яйцеклетки затем пропускают электрический ток. Эта энергия теоретически позволит клонированным эмбрионам начать развиваться. Успешно развитые эмбрионы помещают в суррогатных реципиентов, таких как коровы или овцы в случае сельскохозяйственных животных.

Технология SCNT рассматривается как хороший метод для получения сельскохозяйственных животных для употребления в пищу. Удалось успешно клонировать овец, крупный рогатый скот, коз и свиней. Еще одним преимуществом является то, что SCNT рассматривается в качестве решения для клонирования исчезающих видов, которые находятся на грани вымирания. Однако, стресс на обе яйцеклетки и введенное ядро огромен, что приводит к большим потерям полученных клеток. Например, клонированная овца Долли родилась после использования 277 яйцеклеток для SCNT, в котором было создано 29 жизнеспособных эмбрионов. Только 3 из этих эмбрионов дожили до рождения, и только 1 дожил до взрослой жизни. Так как процедура в настоящее время не может быть автоматизирована и должна выполняться вручную под микроскопом, SCNT - очень ресурсоемкая технология. Биохимия, вовлеченная в перепрограммирование дифференцированного ядра соматической клетки и активацию яйцеклетки-реципиента, также не совсем хорошо понята.

В SCNT переносится не вся генетическая информация клетки-донора, так как митохондрии клетки-донора, которые содержат свою собственную митохондриальную ДНК, остаются. Полученные гибридные клетки сохраняют эти митохондриальные структуры, которые изначально принадлежали яйцеклетке. Как следствие, клоны, такие как Долли, которые рождаются от SCNT, не являются совершенными копиями донора ядра.

Клонирование организма

Клонирование организма (также репродуктивное) относится к процедуре создания нового многоклеточного организма, генетически идентичного другому. В сущности это форма клонирования - способ бесполого размножения, где не происходит оплодотворение или контакт между гаметами. Бесполое размножение - это естественное явление у многих видов, в том числе у большинства растений и некоторых насекомых. Ученые добились некоторых главных достижений с клонированием, в том числе бесполого размножения овец и коров. Существует много этических дискуссий по поводу того, будет или не будет использоваться клонирование. Тем не менее, клонирование или бесполое размножение было обычной практикой в садоводстве на протяжении сотен лет.

Садоводство

Термин «клон» использовался в садоводстве для обозначения потомков одного растения, которые были произведены путем вегетативного размножения или апомиксиса. Многие садовые сорта растений являются клонами, будучи производным от одной отдельной особи, умноженной каким-либо процессом, помимо полового размножения. В качестве примера можно назвать некоторые европейские сорта винограда, которые являются клоны, которых размножали на протяжении более двух тысячелетий. Среди других примеров - картофель и бананы. Прививка может рассматриваться как клонирование, так как все побеги и ветви, идущие от привитого участка, являются генетически клоном одной особи, но этот особый вид технологии не подпадает под этический контроль и, как правило, рассматривается как совершенно другой вид операции.

Многие деревья, кустарники, лианы, папоротники и другие травянистые многолетники образуют колонии клонов естественным образом. Части отдельного растения можно отделить от фрагментации и вырастить, чтобы они стали отдельными клоновыми особями. Типичным примером является вегетативное размножение мхов и клонов печеночников гаметофита с помощью гемм. Некоторые сосудистые растения, например, одуванчик и некоторые живородящие травы, также образуют семена бесполым способом, называемым апомиксисом, давая клоновые популяции генетически идентичных особей.

Партеногенез

Клональный вывод существует в природе у некоторых видов животных и упоминается как партеногенез (воспроизводство организма само по себе, без пары). Это бесполая форма воспроизводства, которая встречается только у самок некоторых насекомых, нематод, ракообразных, рыб (например, акула-молот), ящериц и дракона Комодо. Рост и развитие происходит без оплодотворения самцом. В растениях партеногенез является развитием эмбриона из неоплодотворенных яйцеклеток, и это компонент процесса апомиксиса. У видов, которые используют определение пола XY, потомство всегда будет женского пола. Примером может служить огненный муравей малый (Wasmannia auropunctata ), обитающий в Центральной и Южной Америке, но распространившийся по многим тропическим местностям.

Искусственное клонирование организмов

Эта технология может быть также названа репродуктивным клонированием.

Первые шаги

Ханс Спеманн, немецкий эмбриолог, был удостоен Нобелевской премии по физиологии и медицине в 1935 г. за открытие эффекта, теперь известного как эмбриональная индукция, осуществляемая различными частями зародыша, который направляет развитие групп клеток в частности тканей и органов. В 1928 г. он и его ученик, Хильде Мангольд, впервые провели терапевтическое клонирование с помощью эмбрионов амфибий - один из первых шагов в этом направлении.

Методы

В репродуктивном клонировании, как правило, используется «пересадка ядра соматической клетки» (SCNT), чтобы создать идентичных генетически животных. Этот процесс влечет за собой пересадку ядра от взрослой донорской клетки (соматической клетки) в яйцеклетку, из которой было удалено ядро, или в клетку из бластоцисты, из которой было удалено ядро. Если яйцеклетка начинает делиться нормально, ее переносят в полость матки суррогатной матери. Строго идентичными такие клоны не являются, поскольку соматические клетки могут содержать мутации в их ядерной ДНК. Кроме того, митохондрии в цитоплазме также содержат ДНК и во время SCNT эта митохондриальная ДНК целиком получена из яйцеклетки цитоплазматического донора, таким образом, митохондриальный геном не такой же самый, как у ядра клетки-донора, из которого он был произведен. Это может иметь важные последствия для межвидовой пересадки ядра, в которой ядерно-митохондриальные несовместимости могут привести к смерти.

Искусственное расщепление эмбриона или двойникование эмбриона, метод, в котором создаются монозиготные близнецы из одного эмбриона, не рассматривается таким же образом, как и другие методы клонирования. Во время этой процедуры донорский эмбрион делится на два различных эмбриона, которые затем могут быть перемещены с помощью переноса эмбриона. Она оптимально выполняется на стадии 6-8 клеток, где ее можно использовать в качестве расширения ЭКО , чтобы увеличить количество доступных эмбрионов. Если оба эмбрионы успешны, это приводит к монозиготным (идентичным) близнецам.

Овечка Долли

Долли, овца породы финн-дорсет, была первым млекопитающим, успешно клонированным из взрослой клетки. Долли была сформирована путем принятия яйцеклетки из вымени ее биологической матери. Ее биологической матери было 6 лет, когда клетки были взяты из ее вымени. Эмбрион Долли была создана путем отбора клетки и введения ее в овечью яйцеклетку. Потребовались 434 попытки, прежде чем эмбрион был успешным. Эмбрион был помещен внутрь самки овцы, прошедшей через нормальную беременность. Она была клонирована в шотландском Институте Рослин и жила там с рождения в 1996 г. и до смерти в 2003 г., когда ей было 6 лет. Она появилась на свет 5 июля 1996 г., но миру об этом объявили только 22 февраля 1997 г. Ее набитые останки были помещены в Королевском музее Эдинбурга, части Национальных музеев Шотландии.

Долли имела общественное значение, поскольку усилия показали, что генетический материал от конкретной взрослой клетки, запрограммированной для экспрессии только отличного подмножества его генов, можно перепрограммировать, чтобы вырастить совершенно новый организм. До этой демонстрации Джон Гардон показал, что ядра из дифференцированных клеток могут дать рост целому организму после трансплантации в яйцеклетку с удаленным ядром. Тем не менее, эта концепция еще не продемонстрирована в системе млекопитающих.

Доля успешных попыток первого клонирования млекопитающего (приведшего к овечке Долли) составила 277 оплодотворенных яйцеклеток и 29 эмбрионов, которые дали 3 ягнят при рождении, лишь 1 из которых выжил. Для крупного рогатого скота проводился эксперимент с участием 70 клонированных телят, треть из них умерли молодыми. Для лошадей порода Прометей было сделано 814 попыток. Следует отметить, что хотя первые клоны были лягушками, взрослая клонированная лягушка пока не получена из ядра взрослой соматической донорской клетки.

Были ранние утверждения, что овечка Долли имела патологии, напоминающие ускоренное старение. Ученые предположили, что смерть Долли в 2003 г. была связана с укорочением теломер, ДНК-белковых комплексов, которые защищают конец линейных хромосом. Тем не менее, другие исследователи, в том числе Ян Вилмут, который возглавлял команду, которая успешно клонировала Долли, утверждают, что ранняя смерть Долли из-за респираторной инфекции была связана с недостатками процесса клонирования. В 2013 г. на мышах была показана справедливость идеи о том, что ядра не старились необратимо.

Долли была названа в честь исполнительницы Долли Партон, потому что клетки, клонированные, чтобы сделать ее, были взяты из клетки молочной железы, а Партон известна своим пышным бюстом.

Клонированные виды

Современные методы клонирования с использованием переноса ядра были успешно выполнены на нескольких видах. Известные эксперименты включают:

Клонирование человека

Клонирование человека представляет собой создание генетически идентичной копии человека. Этот термин обычно используется для обозначения искусственного клонирования человека, которое является воспроизведением человеческих клеток и тканей. Это не относится к естественному зачатию и рождению близнецов. Возможность клонирования человека поднимает разногласия. Эти этические соображения побудили несколько стран пройти законодательную процедуру в отношении клонирования человека и его законности.

Два часто обсуждаемых вида технологии - это терапевтическое и репродуктивное клонирование. Терапевтическое - предполагает клонирование человеческих клеток для применения в медицине и трансплантации, и является активной областью исследований, но не в медицинской практике в любой точке мира, по состоянию на 2014 г. В настоящее время исследуются два вида терапевтического клонирования, среди которых индукция плюрипотентных стволовых клеток. В репродуктивном клонировании предполагается создание полностью клонированного человека, а не только конкретных клеток или тканей.

Этические вопросы

Есть множество этических позиций по возможности клонирования, особенно человека. Хотя многие взгляды являются религиозными по своему происхождению, есть и вопросы в плане светских перспектив. Перспективы клонирования человека являются теоретическими, а терапевтическая и репродуктивная технологии не используются на коммерческой основе; животных в настоящее время клонируют в лабораториях и в производстве животноводческой продукции.

Сторонники поддерживают развитие терапевтического клонирования в целях получения тканей и целых органов для лечения пациентов, которые в противном случае не могут получить трансплантаты, чтобы избежать необходимости применения иммуносупрессивных препаратов, а также предотвратить последствия старения. Защитники репродуктивного клонирования считают, что родители, которые не могут в противном случае иметь потомство, должны получить доступ к технологии.

У противников клонирования есть опасения по поводу недостаточно развитой технологии, чтобы считать ее безопасной, склонности к злоупотреблению (что приводит к генерации людей для заготовки органов и тканей) и опасения о том, как клонированные люди могли бы интегрироваться с семьями и с обществом в целом.

Религиозные группы разделились, некоторые выступают против этой технологии, как узурпации места Бога, утверждая, что эмбрионы используются для уничтожения человеческой жизни; другие поддерживают потенциальные выгоды терапевтического клонирования для спасения жизни.

Защитники животных выступают против клонирования животных из-за того, что они страдают от пороков, прежде чем умереть, и хотя продукты питания из клонированных животных были одобрены FDA в США, его использование отвергают группы, обеспокоенные пищевой безопасностью.

Клонирование вымерших и находящихся под угрозой исчезновения видов

Клонирование, или, точнее, реконструкция функциональной ДНК вымерших видов было мечтой на протяжении многих десятилетий. Возможные последствия этого были экранизированы в романе 1984 г. «Карнозавр» и романе 1990 г. «Парк Юрского периода». Надежды на спасение исчезающих и вымерших видов путем клонирования реализуются в виде медленного, но устойчивого прогресса. Лучшие современные методы клонирования имели среднюю долю успешных попыток 9,4% (до 25%) при работе со знакомыми видами, такими как мыши, а при клонировании диких животных, как правило, менее 1% успеха. Появились банки тканей, в том числе «Frozen Zoo» в зоопарке Сан-Диего, чтобы хранить замороженные ткани самых редких и находящихся под угрозой исчезновения видов в мире.

В 2001 г. корова по кличке Бесси родила клонированного азиатского гаура, находящегося под угрозой исчезновения, но теленок умер через 2 дня. В 2003 г. успешно клонировали бантенга, а затем 3 африканских диких кошек из талых замороженных эмбрионов. Эти успехи дают надежду, что подобные методы (с использованием суррогатных матерей другого вида) могут применяться для клонирования вымерших видов. Предвидя такую возможность, образцы тканей от последнего букардо (пиренейский козерог) были заморожены в жидком азоте сразу после того, как он умер в 2000 г. Исследователи также рассматривают возможность клонирования находящихся под угрозой исчезновения видов, таких как гигантская панда и гепард.

В 2002 г. генетики в музее Австралии объявили, что они дублировали ДНК сумчатого волка, который к тому времени вымер около 65 лет назад, с использованием метода полимеразной цепной реакции. Тем не менее, 15 февраля 2005 г. музей объявил, что он остановил проект после того, как испытания показали, что ДНК образцов слишком плохо деградировалась консервантом (этанол). 15 мая 2005 г. было объявлено, что проект «Сумчатый волк» будет возрожден, теперь с участием исследователей в Новом Южном Уэльсе и Виктории.

В январе 2009 г. впервые было клонировано вымершее животное, упомянутый выше пиренейский козерог. Это было сделано в Центре пищевых технологий и исследований Арагона, используя сохранившиеся замороженные ядра клетки из образцов кожи 2001 г. и яйцеклеток домашней козы. Вскоре после рождения козерог умер из-за физических дефектов в своих легких.

Одной из самых ожидаемых целей для клонирования когда-то был шерстистый мамонт, но попытки извлечения ДНК из замороженных мамонтов были неудачными, хотя совместная российско-японская команда работает в настоящее время в этом направлении. В январе 2011 г., по сообщениям Йомиури Шимбун, группа ученых во главе с Акирой Иритани из Университета Киото основывалась на исследованиях д-ра Вакаяма, заявив, что они извлекут ДНК из туши мамонта, которые хранились в российской лаборатории, и введут его в яйцеклетку африканского слона в надежде получить эмбрион мамонта. По словам исследователей, они надеялись произвести мамонтенка в течение 6 лет.

Ученые из Университета Ньюкасла и Университета Нового Южного Уэльса объявили в марте 2013 г., что совсем недавно вымершие реобатрахусы будут предметом клонирования в попытке воскресить вид.

Многие из таких проектов «оживления» описаны в проекте Revive and Restore Project фонда Long Now Foundation.

Продолжительность жизни

После восьмилетнего проекта, связанного с использованием новаторской техники клонирования, японские исследователи создали 25 поколений здоровых клонированных мышей с нормальной продолжительностью жизни, демонстрируя, что клонам не свойственна более короткая продолжительность жизни по сравнению с естественно родившимися животными.

В популярной культуре

В статье, опубликованной 8 ноября 1993 г. в Time, клонирование изображалось в негативном ключе, изменяя Создание Адама Микеланджело, изображая Адама с пятью одинаковыми руками. В выпуске Newsweek 10 марта 1997 г. также критиковалась этика человеческого клонирования с графическим изображением одинаковых младенцев в стаканах.

Клонирование является повторяющейся темой в различных произведениях современной научной фантастики, начиная от действия в таких фильмах, как «Парк Юрского периода» (1993 г.), «6-й день» (2000 г.), «Обитель зла» (2002 г.) и «Остров» (2005 г.), в комедиях, таких как фильм Вуди Аллена 1973 г. «Спящий».

Научная фантастика использует клонирование, чаще всего и особенно клонирование человека, из-за того, что оно поднимает спорные вопросы идентичности. В романе Олдоса Хаксли «О дивный новый мир» (1932 г.) клонирование человека является основным сюжетом, который не только управляет историей, но также заставляет читателя критически мыслить о том, что означает идентичность. Эта концепция была пересмотрена 50 лет спустя в романах К.Д. Черри «40000 на Геенне» (1983 г.) и «Сытин» (1988 г.). В романе 2005 г. Кадзуо Исигуро «Никогда не отпускай меня» сюжет сконцентрирован на клонах человека и рассматривает этику практики. Еще одна книга, которая воплощает идеи клонирования, это «Дом скорпиона», которая исследует права клонов человека и извлечение органов глазами клона. Короткий роман «Содержит Бога» С.М. Васи Хайдера также рассматривает идеи клонирования, этики, похоти и других вопросов, вращающихся вокруг темы, подчеркивая идею, что создание жизни дает людям ложное чувство божественности. Последствия использования клонов, чтобы заменить умерших близких, рассматриваются в нескольких художественных произведениях. В романе «Двойная личность» Маргарет Питерсон Хаддикс главная героиня обнаруживает, что она - клон своей покойной старшей сестры. «Количество» - это пьеса 2002 г. английского драматурга Кэрил Черчилль, в которой рассматривается вопрос о клонировании человека и личности, особенно природы и воспитания. История разворачивается в недалеком будущем и строится вокруг конфликта между отцом (Сэлтер) и его сыновьями (Бернар 1, Бернар 2 и Майкл Блэк), двое из которых являются клонами первого. Пьеса «Количество» была адаптирована Кэрил Черчилль для телевидения, в ко-продукции компаний BBC и HBO Films. В ролях снялись Рис Айфэнс и Том Уилкинсон, фильм был показан на канале BBC Two 10 сентября 2008 г.

Повторяющаяся подтема фантастики о клонировании - это использование клонов в качестве способа обеспечения органов для трансплантации. Роман 2005 г. Кадзуо Исигуро «Не отпускай меня» и киноадаптация 2010 г. основаны на альтернативной истории, в которой клонированные люди создавались с единственной целью обеспечения донорских органов для людей, рожденных естественным образом, несмотря на то, что они полностью разумны и обладают самосознанием. Фильм 2005 г. «Остров» вращается вокруг подобного сюжета, за исключением того, что клоны не знали о причине их существования. В футуристическом романе «Дом Скорпиона» клоны использовались для выращивания органов для их богатых «хозяев», а главный герой был полным клоном.

Использование клонирования человека в военных целях также были исследовано в ряде работ. В фильме «Звездные войны» изображается клонирование человека в «Войнах клонов», «Звездные войны: Эпизод II: Атака клонов»» и «Звёздные войны: Эпизод III: Месть ситхов» в виде Великой Армии Республики, армии клонированных солдат. Расширенная Вселенная также имеет множество примеров клонирования, в том числе трилогию Трауна, руку дилогии Трауна и массовая информация эпохи Войн Клонов.

Эксплуатация человеческих клонов для опасной и нежелательной работы была рассмотрена в британском научно-фантастическом фильме 2009 г. «Луна». В футуристическом романе «Облачный атлас» и последующем фильме одна из сюжетных линий фокусируется на генной инженерии. Клон-фабрикатСонми-451, одна из миллионов, выращенных в искусственной маточной цистерне, призвана служить с самого рождения. Она является одной из тысяч клонов, созданных для ручного и эмоционального труда. Сонми работает официанткой в ресторане. Позже она узнает, что единственный источник пищи для клонов, так называемое «мыло», получен из самих клонов.

В комедии «Множественность» человек клонирует себя 3 раза с помощью генетика.

Клонирование было использовано в художественной литературе как способ воссоздания исторических деятелей. В романе 1976 г. «Мальчики из Бразилии» Айры Левина и его киноадаптации 1978 г., Йозеф Менгеле использует клонирование для создания копий Адольфа Гитлера. В романе Анатолия Кудрявицкого «Парад зеркал и отражений» главной темой является клонирование умершего советского премьера Юрия Андропова.

В аниме «Некий научный рейлган» Микото Мисака, эспер 5 уровня, был клонирован в коммерческом масштабе более 20000 раз для исследовательских целей в возможности эспера 6 уровня. В другом сериале аниме/манга «Евангелион» клон человека является темой, настойчиво окружающей происхождение персонажа Аянами Рей.

В 2012 гг. было снято японское телешоу «Двойник». Главная героиня истории, Марико, является женщиной, изучающей охрану младенчества в Хоккайдо. Она всегда сомневалась в любви своей матери, которая совсем не была похожа на нее и умерла девять лет назад. Однажды она находит некоторые вещи своей матери в доме родственника и направляется в Токио, чтобы искать правду о своем рождении. Позже она узнала, что она - клон.

Технология также фигурирует в серии игр Halo, в частности, технология, известная как «флэш-клонирование», в которой нестабильной клон человека создается в невероятно короткий промежуток времени. Флэш-клонирование используется UNSC, чтобы похитить маленьких детей для введения в военную программу SPARTAN-II, которые тайно заменялись флэш-клонами, умирающими в течение короткого промежутка времени, чтобы гарантировать, что никто не ищет детей. Действие онлайн-игр MMORPG EVE и FPS DUST 514 происходит в далеком будущем, где все персонажи являются клонами; в момент смерти, состояние мозга человека отображается, передается и применяется к «пустому» клону на станции или объекте на некотором расстоянии.

В телесериале 2013 г. «Темное дитя» клонирование используется в качестве научного исследования поведенческой адаптации клонов.